π

International Journal of Universal Mathematics and Mathematical Sciences

ISSN: 2454-7271 Volume: 02, Issue: 01, Pages:28-39, Published:June,2016 Web: www.universalprint.org,

Title Key: Radial Symmetry of Solutions of System of Nonlinear....

Radial Symmetry of Solutions of System of Nonlinear Elliptic Boundary Value Problems

D. P. Patil

Department of Mathematics, Arts, Science and Commerce College Saikheda Tal Niphad. Dist: Nasik,

Email: sdinkarpatil95@gmail.com

Abstract

Radial symmetry of positive solutions of system of nonlinear elliptic bound- ary value problems in R^n is studied. We apply the moving plane method based on maximum principle to obtain our result of symmetry of solutions on unbounded domain R^n .

Keywords: Maximum principles, Moving plane method, Radial symmetry; System of nonlinear elliptic boundary value problems.

Subject Classification: 35B06, 35B09, 35J25, 35B50.

1. Introduction:

$$\Delta u + f(|x|; u) = 0 \text{ in } \mathbb{R}^n$$

and
 $u(x) \to 0 \text{ as } |x| \to \infty.$

Furthermore, Naito [18] also studied the problem of radial symmetry of classical solutions of semilinear elliptic equations Δ u + $V(\mid x\mid)$ e^u = 0 in R^2 , by the moving plane method. Horvata, et al. [13] studied the existence of positive spherically symmetric solutions of polyharmonic boundary value problems. They study the system by relating it to the corresponding system of singular integro differential equations of the first order. Ma and Liu [15] investigated the symmetry properties of positive solutions of semilinear elliptic system . Pucci, Sciunzi and Serrin [20] studied symmetry of solutions of degenerate quasilinear elliptic problems by applying comparison principle. L. Montoro, B. Sciunzi [16] proved radial symmetry in balls for regular solutions of a class of quasilinear elliptic system in

ISSN: 2454-7271 Volume: 02, Issue: 01, Pages:28-39,

Published:June,2016 Web: www.universalprint.org,

Title Key: Radial Symmetry of Solutions of System of Nonlinear.....

nonvariational form. Covei [2] proved necessary and sufficient conditions for a positive radial solution of semilinear ellipic problem. In 2012, Damascelli et al. [3] proved symmetry of solutions of semilinear cooperative elliptic system in unit ball and in annulus in \mathbb{R}^n . Abduragimov [1] proved the existence and uniqueness of positive radially symmetric solutions of the Dirichlet problem for a nonlinear elliptic system. Farina [9] proved the symmetry result for the system,

$$\Delta u = uv^2$$
; $\Delta v = vu^2$; $u \ge 0$; $v \ge 0$ in \mathbb{R}^n :

Damascelli and Pacella [4] proved solutions having Morse index $j \le N$ are foliated schwartz symmetric by using symmetrization for a semilinear elliptic system. Recently Dhaigude and Patil [5] studied the radial symmetry of positive solutions of semilinear elliptic problem in unit ball. Also, Dhaigude and Patil [6], [7], [8] obtained symmetric results for semilinear elliptic boundary value problems and system of nonlinear boundary value problems, using moving plane method.

In this paper we study the radial symmetry of positive solutions for system of nonlinear elliptic boundary value problem in R^n . We consider the nonlinear elliptic boundary value problem of the form

$$\Delta u + f(|x|; u; v) = 0$$

$$\ln R^{n}$$

$$\Delta v + g(|x|; u; v) = 0$$
and
$$u(x) \rightarrow 0, v(x) \rightarrow 0 \text{ as } |x| \rightarrow \infty.$$
(1.1)

These type of systems occur in many models of physics, where study of symmetry property is important. Our approach is based on the maximum principle in unbounded domains together with the moving plane method. This approach helps us to prove our results. We organise the paper as follows: In section 2, the preliminary results and some useful lemmas are proved. The symmetric result is proved and some illustrative examples are given in the last section.

2. Preliminaries

In this section, _rst we state some basic lemmas and boundary maximum principle which are useful to prove our main result.

Lemma 2.1 [12] Hopf boundary lemma : Suppose that Ω satisfies the interior sphere condition at $x_0 \in \partial \Omega$. Let L be uniformly elliptic with $c(x) \leq 0$ where

常

International Journal of Universal Mathematics and Mathematical Sciences

ISSN: 2454-7271 Volume: 02, Issue: 01, Pages:28-39,

Published:June,2016 Web: www.universalprint.org,

Title Key: Radial Symmetry of Solutions of System of Nonlinear....

$$L(u) = \sum_{i,j=1}^{n} a_{ij}(x) \frac{\partial^{2}(x)}{\partial x_{i} \partial x_{j}} + \sum_{j=1}^{n} b_{i}(x) \frac{\partial u}{\partial x_{j}} + c(x)u \text{ in } \Omega.$$

If $u \in C^2(\Omega) \cap C(\overline{\Omega})$ satisfies $L(u) \ge 0$ and $\max_{\overline{\Omega}} u(x) = u(x_0)$, hen either u = u(x0) on Ω or

 $\liminf_{t\to 0} \frac{u(x)-u(x_0+t\nu)}{t} > 0$. For every direction ν pointing into an interior sphere. If

$$u \in C^1 \subset \Omega \cap \{0\}$$
 then $\frac{\partial u}{\partial v}(x_0) < 0$

Lemma 2.2 [17] Let Ω be an unbounded domain in \mathbb{R}^n , and let L denote the uniformly elliptic differential operator of the form

$$L(u) = a^{ij}(x)\partial_{ii}u + b^{i}(x)\partial_{i}(u) + c(x)u$$

where a^{ij} , b^i , $c \in L^{\infty}(\Omega)$. Suppose that $u \neq 0$ satisfies

 $L(u) \leq 0$ in Ω and $u \geq 0$ on $\partial\Omega$:

Furthermore, suppose that there exist a function w such that w > 0 on $\Omega \cup \partial \Omega$ and $L(w) \leq 0$ in Ω .

If
$$\frac{u(x)}{w(x)} \to 0$$
 as $|x| \to \infty$, $x \in \Omega$, then $u > 0$ in Ω .

Theorem 2.1 [19] Let u(x) satisfies differential inequality

$$L(u) \geq 0$$

in a domain Ω where L is uniformly elliptic. If there exist a function w(x) such that, w(x) > 0 on $\Omega \cup \partial \Omega$ and satisfies the differential inequality

$$L(w) \leq 0$$
 in Ω ,

then $\frac{u(x)}{w(x)}$ can not attain a non negative maximum at a point p on $\partial\Omega$, which lies on the

boundary of a ball in Ω and if $\frac{u(x)}{w(x)}$ is not constant then, $\frac{\partial}{\partial v}(\frac{u}{w}) > 0$

$$\frac{\partial}{\partial v}(\frac{u}{w}) > 0$$
 at P.

where $\frac{\partial}{\partial v}$ is any outward directional derivative.

ISSN: 2454-7271 Volume: 02, Issue: 01, Pages:28-39,

Published:June,2016 Web: www.universalprint.org,

Title Key: Radial Symmetry of Solutions of System of Nonlinear....

3. Main Results

In this section, we prove our main result. We define the plane T_{λ} , for a real number λ as follows $T_{\lambda} = \{x : x = (x1; x2; x3; :::; xn); x1 = \lambda\}$, which is perpendicular to X1-axis. We will move this plane continuously normal to itself to new position till it begins to intersect Ω . After that point the plane advances in Ω along X1- axis and cut of cap \sum_{λ} ; which is the portion of Ω and lies in the same side of the plane T_{λ} as the original plane T. Let $\sum_{\lambda} = \{x : x1 < \lambda ; x \in \Omega\}$: Let $x^{\lambda} = (2\lambda - x1; x2; x3; :::; xn)$ be the reflection of the point x = (x1; x2; x3; :::; xn), about the plane T_{λ} . Define $w1;\lambda(x) = u(x) - u(x_{\lambda})$, and $w2;\lambda(x) = v(x) - v(x_{\lambda})$. We have $|x^{\lambda}| \geq |x|$ and $u(x_{\lambda}) = u(2\lambda - x1; x2; x3; :::; xn)$. Also define set $\lambda = \{\lambda \in (0; \infty) : w1;\lambda(x) > 0; w2;\lambda(x) > 0\}$ for $x \in \sum_{\lambda} (0; \infty) = v(x)$. Now, we prove our main result,

Theorem 3.1 *Suppose that*

- (i) $(u; v) \in C^2$ is a positive solution of the system of nonlinear elliptic boundary value problem (1.1)-(1.2),
- (ii) functions f and g are continuous in all its variables and C1 in $u \ge 0$, $v \ge 0$,
- (iii) $f(|x|, u(x); v(x1; x2; x3; ...; xi-1; 2\lambda xi; xi+1; ...:xn)) = f(|x|, u(x); v(x1; x2; x3; ...; xi-1; xi; xi+1; ...:xn))$, for all $1 \le i \le n$,
- $\begin{array}{ll} \text{(iv)} & g \; (\mid x \mid \; ; \; u(x1; \; x2; \; x3; \; ...; \; xi \square 1; \; 2\lambda \; \; \; xi; \; xi + 1; \; ...; \; xn); \; v(x)) \; = g \; (\mid x \mid \; ; \; u(x1; \; x2; \; x3; \; ...; \; xi \square 1; \; xi; \; xi + 1; \; ...; \; xn); \; v(x) \;) \; \text{for all} \; 1 \leq i \leq n, \end{array}$
- (v) functions f and g are nonincreasing in |x|, for each fixed $u \ge 0$, $v \ge 0$. Further we define U ,V and Φ such as

$$U(r) = \sup \{u(x) : |x| \ge r\}$$
(3.1)

$$V(r) = \sup\{v(x) : |x| \ge r\}$$
(3.2)

$$\Phi(|x|) = \sup \{ fu(|x|; u; v); gv(|x|; u; v) : 0 \le u(x) \le U(r); 0 \le v(x) \le V(r) \}$$
 (3.3)

Furthermore assume that there exist positive functions z1; z2 on $|x| \ge R0$; for some positive constant R0 satisfying differential inequalities

$$\Delta z_1 + \Phi(|x|)z_1 \le 0$$

$$In |x| > R_0$$

$$\Delta z_2 + \Phi(|x|)z_2 \le 0$$
(3.4)

and

D. P. Patil

常

International Journal of Universal Mathematics and Mathematical Sciences

ISSN: 2454-7271 Volume: 02, Issue: 01, Pages:28-39,

Published:June,2016 Web: www.universalprint.org,

Title Key: Radial Symmetry of Solutions of System of Nonlinear....

$$\lim_{|x| \to \infty} \frac{U(x)}{z_1(x)} = 0 \tag{3.5}$$

$$\lim_{|x| \to \infty} \frac{V(x)}{z_2(x)} = 0 \tag{3.6}$$

Then (u; v) is radially symmetric about some x0 in Rn and ur < 0, ur < 0 for r = |x - x0| > 0.

To prove our result following lemmas are useful. First we prove them.

Lemma 3.1 Let $\lambda \ge 0$, then w1; $\lambda(x)$ and w2; $\lambda(x)$ satisfies differential inequalities

$$\Delta w_{1,\lambda}(x) + C_{1,\lambda}(x)w_{1,\lambda}(x) \le 0$$
 in \sum_{λ}

$$\Delta w_{2,\lambda}(x) + C_{2,\lambda}(x)w_{2,\lambda}(x) \le 0$$
 in \sum_{λ}

Where

$$C_{1,\lambda}(x) = \int_{0}^{1} f_{u}(|x|, \mathbf{u}(\mathbf{x}^{\lambda}) + \mathbf{t}[\mathbf{u}(\mathbf{x}) - \mathbf{u}(\mathbf{x}^{\lambda})]; \mathbf{v}(\mathbf{x}))dt$$

$$C_{2,\lambda}(x) = \int_{0}^{1} g_{v}(|x|, u(x), v(x^{\lambda}) + t[v(x) - v(x^{\lambda})])dt$$

Proof: Since f(|x|; u; v) and g(|x|; u; v) are nonincreasing in |x| and $|x^{\lambda}| > |x|$ for

 $x \in \sum_{\lambda}$ hold. We observe that $u(x^{\lambda})$ and $v(x^{\lambda})$ satisfy the equations

$$\Delta u(x^{\lambda}) + f(|x^{\lambda}|, u(x^{\lambda}), v(x^{\lambda}) = 0 \quad \text{in } \sum_{\lambda}$$
 (3.7)

$$\Delta v(x^{\lambda}) + g(|x^{\lambda}|, u(x^{\lambda}), v(x^{\lambda}) = 0 \quad \text{in } \sum_{\lambda}$$
 (3.8)

Subtracting (3.7) from first equation of (1.1) we get

$$\Delta w_{1,\lambda}(x) + C_{1,\lambda}(x)w_{1,\lambda}(x) \le 0$$
 in \sum_{λ}

where

$$C_{1,\lambda}(x) = \int_{0}^{1} f_{u}(|x|, \mathbf{u}(\mathbf{x}^{\lambda}) + \mathbf{t}[\mathbf{u}(\mathbf{x}) - \mathbf{u}(\mathbf{x}^{\lambda})]; \mathbf{v}(\mathbf{x}))dt$$

Similarly subtracting (3.8) from second equation of (1.1) we can prove that,

$$\Delta w_{2,\lambda}(x) + C_{2,\lambda}(x)w_{2,\lambda}(x) \le 0$$
 in \sum_{λ}

where

常

International Journal of Universal Mathematics and Mathematical Sciences

ISSN: 2454-7271 Volume: 02, Issue: 01, Pages:28-39,

Published:June,2016 Web: www.universalprint.org,

Title Key: Radial Symmetry of Solutions of System of Nonlinear....

$$C_{2,\lambda}(x) = \int_{0}^{1} g_{v}(|x|, u(x), v(x^{\lambda}) + t[v(x) - v(x^{\lambda})])dt$$

The proof of the lemma is completed.

Lemma 3.2 Let
$$\lambda > 0$$
, If $w_{1,\lambda}(x) > 0$, and $w_{2,\lambda}(x) > 0$ in $\sum_{\lambda} \cap \overline{B_0}$, Then $\lambda \in \Lambda$.

Proof: By using assumptions and lemma 3.1, we have

$$\Delta W_{1,\lambda}(x) + C_{1,\lambda}(x) W_{1,\lambda}(x) \le 0$$

in
$$\sum_{\lambda} \setminus \overline{B_0}$$

$$\Delta w_{2,\lambda}(x) + C_{2,\lambda}(x)w_{2,\lambda}(x) \le 0$$

and

$$w_{1,\lambda}(x) > 0$$
, and $w_{2,\lambda}(x) > 0$ on $\partial \left(\sum_{\lambda} \setminus \overline{B_0} \right)$.

Since U(r) and V(r) are nonincreasing, we have

$$0 \le u(x^{\lambda}) + t(u(x) - u(x^{\lambda}) \le U(|x|)$$

$$0 \le t \le 1$$

$$0 \le v(x^{\lambda}) + t(v(x) - v(x^{\lambda}) \le V(|x|)$$

Then we observe that

$$C_{1,\lambda}(x) \le \int_{0}^{1} \Phi(|x|) dt \le \Phi(|x|)$$
 in \sum_{λ}

Similarly we can show that,

$$C_{2,\lambda}(x) \le \int_{0}^{1} \Phi(|x|) dt \le \Phi(|x|)$$
 in \sum_{λ}

From (3.4) we have

$$\Delta z_1 + C_{1,\lambda}(x) \le 0 \text{ in } \sum_{\lambda} \setminus \overline{B_0}$$

$$\Delta z_2 + C_{2,\lambda}(x) \le 0$$
 in $\sum_{\lambda} \setminus \overline{B_0}$

and

$$\frac{w_{1,\lambda}(x)}{z_1(x)} \to 0$$
, $\frac{w_{2,\lambda}(x)}{z_2(x)} \to 0$ as $|\mathbf{x}| \to \infty$, for $\mathbf{x} \in \sum_{\lambda} \setminus \overline{B_0}$

Hence by Lemma (2.2)

$$w_{1,\lambda}(x) > 0$$
, and $w_{2,\lambda}(x) > 0$ in $\sum_{\lambda} \setminus \overline{B_0}$.

From this it follows that,

$$w_{1,\lambda}(x) > 0$$
, and $w_{2,\lambda}(x) > 0$ in \sum_{λ}

Therefore $\lambda \in \Lambda$. This completes the proof

π

International Journal of Universal Mathematics and Mathematical Sciences

ISSN: 2454-7271 Volume: 02, Issue: 01, Pages:28-39,

Published:June,2016 Web: www.universalprint.org,

Title Key: Radial Symmetry of Solutions of System of Nonlinear....

Lemma 3.3 Let $\lambda \in A$, Then $\frac{\partial u}{\partial x_1} < 0$ and $\frac{\partial v}{\partial x_1} < 0$ on T_{λ} .

Proof: By Lemma 3.1 we have

$$\Delta w_{1,\lambda}(x) + C_{1,\lambda}(x)w_{1,\lambda}(x) \le 0 \quad \text{in } \sum_{x \in X} |x|^{2} dx$$

$$\Delta w_{2,\lambda}(x) + C_{2,\lambda}(x)w_{2,\lambda}(x) \le 0$$
 in \sum_{λ}

Since $w_{1,\lambda}(x) = 0$ on T_{λ} by Hopf's boundary lemma we have $\frac{\partial w_{1,\lambda}(x)}{\partial x_1} < 0$ and

$$\frac{\partial w_{2,\lambda}(x)}{\partial x_1} < 0 \text{ on } T_{\lambda} \text{ . We have } \frac{\partial w_{2,\lambda}(x)}{\partial x_1} = 2 \frac{\partial v}{\partial x_1} \text{ and } \frac{\partial w_{2,\lambda}(x)}{\partial x_1} = 2 \frac{\partial v}{\partial x_1}.$$

Therefore
$$\frac{\partial u}{\partial x_1} < 0$$
 $\frac{\partial u}{\partial x_2} < 0$

Now we prove theorem3.1.

Proof of the theorem:

Since u(x); v(x) are positive with

$$\lim_{|x|\to\infty}u(x)=0$$

and

$$\lim_{|x|\to\infty}v(x)=0$$

then there exist R1;R2 > R0 such that

$$\max\{u(x): |x| \ge R_1\} < \min\{u(x): |x| \le R_0\}$$
(3.9)

$$\max\{v(x): |x| \ge R_2\} < \min\{v(x): |x| \le R_0\}$$
(3.10)

$$w_{1,\lambda}(x) > 0$$
, in $\overline{B_0}$

Also from equation (3.10) we get,

$$w_{2,\lambda}(x) > 0$$
, in $\overline{B_0}$

Then by Lemma 3.2 we have $\lambda \in \Lambda$. Therefore $[Rm; \infty) \subset \Lambda$. Hence step-I is completed. Step-II: In this step we prove that, if $\lambda_0 \in \Lambda$ then there exist $\epsilon > 0$ such that $(\lambda_0 - \epsilon; \lambda_0] \subset \Lambda$. Assume to the contrary that there exist an increasing sequence $\{\lambda_i\}$, i = 1; 2; 3; ::: such that $\lambda_i \notin \Lambda$ and $\lambda_i \to \lambda_0$ as $i \to \infty$, which contradicts to Lemma 3.2.

D. P. Patil

ISSN: 2454-7271 Volume: 02, Issue: 01, Pages:28-39,

Published:June,2016 Web: www.universalprint.org,

Title Key: Radial Symmetry of Solutions of System of Nonlinear....

Therefore we have a sequence $\{x_i\}$ i=1; 2; 3; ::: such that $x_i \in \sum_{\lambda i} \cap \overline{B_0}$ and $w_{1,\lambda i}(x_i) \leq 0$ or $w_{2,\lambda i}(x_i) \leq 0$. A subsequence $\{x_i^*\}$, converges to some point $x_0 \in \overline{\sum_{\lambda 0}} \cap \overline{B_0}$. Then $w_{1,\lambda i}(x_i) \leq 0$ or $w_{2,\lambda i}(x_i) \leq 0$. But in $\sum_{\lambda 0}$, we must have $x_i \to x_i^{\lambda i}$

 $w_{1,\lambda_0}(x_0)>0$ and $y_i\to x_0$. Therefore we conclude that $x_0\in T_{\lambda_0}$. By mean value $u(x)\geq u(x^0)$

theorem, there exist a point yi such that

$$\frac{\partial u}{\partial x_i}(y_i) \ge 0$$

and

$$\frac{\partial v}{\partial x_i}(y_i) \ge 0$$

on the line segment joining $x_i \to x_i^{\lambda i}$ for each i = 1; 2; 3; Also $y_i \to x_0$ as $i \to \infty$.

So
$$\frac{\partial u}{\partial x_1}(x_0) \ge 0$$
 and $\frac{\partial v}{\partial x_1}(x_0) \ge 0$

But by Lemma 3.1 we have

$$\frac{\partial u}{\partial x_1}(x_0) \le 0$$

and

$$\frac{\partial v}{\partial x_1}(x_0) \le 0$$

which is a contradiction and step II is completed.

Step-III: Consider the following two statements (A) and (B),

(A)
$$u(x) \equiv u(x^{\lambda 1})$$
 and $v(x) \equiv v(x^{\lambda 1})$ for some $\lambda_1 > 0$ and $\frac{\partial u}{\partial x_1} \le 0$, $\frac{\partial v}{\partial x_1} \le 0$ on T_{λ} for $\lambda > \lambda_1$

Or

(B)
$$u(x) \ge u(x^0)$$
 and $v(x) \ge v(x^0)$ in $\sum_{\lambda 1}$ and $\frac{\partial u}{\partial x_1} \le 0$, $\frac{\partial v}{\partial x_1} \le 0$ on T_{λ} for $\lambda > 0$.

We consider two cases (i)If $\lambda_1 > 0$, then we prove that statement (A) holds. (ii) If $\lambda_1 = 0$, then we prove that statement (B) holds.

Define
$$\lambda_1 = \min\{\lambda > 0 : [\lambda, \infty) \subset \Lambda\}$$
.

D. P. Patil

ISSN: 2454-7271 Volume: 02, Issue: 01, Pages:28-39,

Published:June,2016 Web: www.universalprint.org,

Title Key: Radial Symmetry of Solutions of System of Nonlinear....

Case (i) where $\lambda_1 > 0$.

We have

$$W_{1,\lambda 1}(x) = u(x) - u(x^{\lambda 1})$$

$$w_{2,\lambda_1}(x) = v(x) - v(x^{\lambda_1})$$

From the continuity of u and v, we have $w_{1,\lambda 1}(x) \ge 0$, $w_{2,\lambda 1}(x) \ge 0$ in $\sum_{\lambda 1}$. From lemma 3.1 it follows that

$$\Delta w_{1,21}(x) + c_{1,21}(x)w_{1,21}(x) \le 0$$

in
$$\sum_{\lambda 1}$$

$$\Delta w_{2,\lambda_1}(x) + c_{2,\lambda_1}(x)w_{2,\lambda_1}(x) \le 0$$

Hence by strong maximum principle we have either $w_{1,\lambda_1}(x) \ge 0$, $w_{2,\lambda_1}(x) \ge 0$ or $w_{1,\lambda_1}(x) = 0$, $w_{2,\lambda_1}(x) = 0$ in $\sum_{\lambda_1} w_{2,\lambda_1}(x) = 0$

Assume that $w_{1,\lambda 1}(x) > 0$, $w_{2,\lambda 1}(x) > 0$ in $\sum_{\lambda 1}$, then by lemma 3.2, $\lambda \in \Lambda$. From step-II there exists $\epsilon > 0$ such that $(\lambda_1 - \epsilon, \lambda_1] \subset \Lambda$.

This is contradiction to the definition of λ_1 . Therefore $w_{1,\lambda_1}(x)=0$, $w_{2,\lambda_1}(x)=0$ in $\sum_{\lambda_1} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{j=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{j=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{j=1$

Case (ii) Consider the case where $\lambda 1 = 0$. From the continuity of u and v we have $u(x) \ge u(x^0), v(x) \ge v(x^0)$ in $\sum_{i=0}^{\infty} u(x^i) \ge u(x^i)$ and $u(x) \ge u(x^i) \ge u(x^i)$ in $\sum_{i=0}^{\infty} u(x^i) \ge u(x^i)$ and $u(x) \ge u(x^i)$ in $\sum_{i=0}^{\infty} u(x^i) \ge u(x^i)$ in $\sum_{i=0}^{\infty} u(x^i)$ in $\sum_{i=0}^{\infty}$

Thus statement (B) holds.

If statement (B) occurs in step (III), we can repeat the previous steps I – III for negative X1-direction to conclude that either (u; v) is symmetric in X1-direction about some plane $x_1 = \lambda_1 < 0$. Therefore (u; v)

must be symmetric in X1-direction about some plane and strictly decreasing away from the plane. As we may take any direction as the X1- direction , we conclude that (u; v) is symmetric in every direction about some plane. Therefore (u; v) is radially symmetric about some point $x_0 \in R^n$, $\frac{\partial u}{\partial r} < 0$, $\frac{\partial v}{\partial r} < 0$, for r > 0.

Example

Now, we discuss an example to illustrate theorem 3.1.

ISSN: 2454-7271 Volume: 02, Issue: 01, Pages:28-39,

Published:June,2016 Web: www.universalprint.org,

Title Key: Radial Symmetry of Solutions of System of Nonlinear....

Example 3.1 Consider the elliptic system

$$\Delta u + (n-3)v = 0 \tag{3.11}$$

$$\Delta v + 3(n-5)u^{2}v = 0 \tag{3.12}$$

Here f(|x|, u, v) = (n-3)v is linear and $f(|x|, u, v) = 3(n-5)u^2v$ is nonlinear function.

Clearly
$$\Phi(|x|) = 3(n-5)u^2 = \frac{3(n-5)}{|x|^2}$$
 where $u = \frac{1}{|x|}$. Suppose $z_1(x) = \frac{1}{|x|^2}$, and

 $z_2(x) = \frac{1}{|x|^2}$. Here z1(x) and z2(x) satisfies the inequalities (3.4).

We also have,
$$\lim_{|x|\to\infty} \frac{u(x)}{z_1(x)} = 0$$

Thus condition (3.5) is satisfied. similarly we can show that condition (3.6) holds for the function $z_2(x) = \frac{1}{|x|^2}$. Thus all the conditions of theorem 3.1 are satisfied.

Therefore solutions must be radially symmetric. Clearly this system of equations have radially symmetric solutions about the origin.

4. References

- [1] E. I. Abduragimov, *Uniqueness of positive radially symmetric solutions of the Dirichlet problem for nonlinear elliptic system of second order*, Mathematical notes, Jan 2013, vol.93, issue 1-2, 3-11.
- [2] D. Covei, Radial and non radial solutions for a semilinear elliptic system of Schrodinger type, Funkcialaj Ekvacioj, 54, (2011) 439 449.
- [3] L. Damascelli, F. Gladi, F. Pacella, *A symmetry result for semilinear cooperative elliptic systems*, Serrin, James B.(ed.) et al., Recent trends in nonlinear partial differential equations. II: Stationary problems. Workshop in honor of Patrizia Pucci's 60th birthday 'Nonlinear partial differential equations', Perugia, Italy, May 28 June 1,2012. Providence, RI: American Mathematical Society (AMS). Contemporary Mathematics 595, (2013),187-204.
- [4] L. Damascelli, F. Pacella, Symmetry results for cooperative elliptic systems via linearization, SIAM J. Math. Anal. vol.45 No. 3 (2013), 1003 1026.

ISSN: 2454-7271 Volume: 02, Issue: 01, Pages:28-39,

Published:June,2016 Web: www.universalprint.org,

Title Key: Radial Symmetry of Solutions of System of Nonlinear....

[5] D.B.Dhaigude, D.P.Patil, Symmetry properties of solutions of nonlinear elliptic equations, International journal of Advances in Management, Technology and engineering sciences, Vol.II, 10(11), (July 2013), 24 - 28.

- [6] D.B.Dhaigude, D.P.Patil, Symmetry of solutions of system of nonlinear elliptic boundary value problems in ball, Journal of Global Research in Mathematical Archives, vol.2 No.4 (April 2014), 110-115.
- [7] D.B.Dhaigude, D.P.Patil, Radial symmetry of positive solutions for nonlinear elliptic boundary value problems, Malaya J. Mat.,3(1) (2015), 23-29.
- [8] D.B.Dhaigude, D.P.Patil, *On symmetric solutions of elliptic boundary value problems*, International Journal of Latest Technology in Engineering and Applied Science, vol.IV, issue 1, (Jan 2015), 48-53.
- [9] A. Farina, Some symmetry results for entire solutions of an elliptic system arising in phase separation, Discrete Contin. Dyn. Syst. 34, No.6, (2014), 2505-2511.
- [10] B.Gidas, W.M.Ni and L.Nirenberg, Symmetry and related properties via the maximum principle, Comm.Math.Phys.68(1979), 209-243.
- [11] B.Gidas, W.M.Ni and L.Nirenberg, *Symmetry of positive solutions of nonlinear elliptic equations in Rn*, Mathematical Analysis and Applications Part A, ed.by L. Nachbin, adv. Math. Suppl. Stud. 7, Academic Press, New York, 1981, 369-402.
- [12] D. Gilbarg, N.S. Trudinger; *Elliptic Partial Differential Equations of Second Order*, Springer-Verlag, Berlin, 2001.
- [13] L. Horvata, J. Kraljevich, D. Zbreve; ubrinica and V. Zbreve; upanovica, *Positive* solutions of polyharmonic equations with strong dependence on the gradient complex variables and elliptic equations, vol. 52, No. 8, Aug 2007, 693-707.
- [14] H.Hopf, Differential Geometry in the Large, Lecture notes in in Mathematics, Vol 1000, Springer Verlag, 1983.
- [15] L. Ma, B. Liu, *Symmetry results for decay solutions of elliptic systems in whole space*, Advances in Mathematics, 225 (2010) 3052 3063.
- [16] L. Montoro, B.Sciunzi, Symmetry results for nonvariational quasilinear elliptic systems, Advanced Nonlinear Studies 10(2010) 939 955.
- [17] Y. Naito, *Radial symmetry of positive solutions for semilinear elliptic equations in R*ⁿ; J. Korean Math. Society 37 (2000) No.5, P.P. 751-761.
- [18] Y. Naito, Symmetry results for semilinear elliptic equations in R²; Nonlinear Analysis 47 (2001),3661-3670.
- [19] M. Protter and H. Weinberger, *Maximum Principles in Differential Equations*, Springer Verlag, 1984.

π̈́

International Journal of Universal Mathematics and Mathematical Sciences

ISSN: 2454-7271 Volume: 02, Issue: 01, Pages:28-39,

Published:June,2016 Web: www.universalprint.org,

Title Key: Radial Symmetry of Solutions of System of Nonlinear.....

[20] P.Pucci, B. Sciunzi and J. Serrin, *Partial and full symmetry of solutions of quasilinear elliptic equations, via the comparison principle,* Contemporary Mathematics, special volume dedicated to H. Brezis (2007).

- [21] J.Serrin, A symmetry problem in potential theory, Arch.Rational Mech. Anal 43,(1971),304-318.
- [22] W. Troy, Symmetry properties in systems of semilinear elliptic equations, J.diff.eqn.42,(1981),400-413.