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Abstract 

Radial symmetry of positive solutions of system of nonlinear elliptic bound- ary 
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1. Introduction: 

                                      u + f(  x  ; u) = 0 in R
n
      

    and       

   u(x)     0 as     x    . 

Furthermore, Naito [18] also studied the problem of radial symmetry of 

classical solutions of semilinear elliptic equations   u + V(  x ) eu = 0 in R2, by the 

moving plane method. Horvata, et al. [13] studied the existence of positive 

spherically symmetric solutions of polyharmonic boundary value problems. They 

study the system by relating it to the corresponding system of singular integro 

differential  equations of the first order. Ma and Liu [15] investigated the symmetry 

properties of positive solutions of semilinear elliptic system . Pucci, Sciunzi and 

Serrin [20] studied symmetry of solutions of degenerate quasilinear elliptic problems 

by applying comparison principle. L. Montoro, B. Sciunzi [16] proved radial 

symmetry in balls for regular solutions of a class of quasilinear elliptic system in 
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nonvariational form. Covei [2] proved necessary and sufficient conditions for a 

positive radial solution of semilinear ellipic problem. In 2012, Damascelli et al. [3] 

proved symmetry of solutions of semilinear cooperative elliptic system in unit ball 

and in annulus in Rn. Abduragimov [1] proved the existence and uniqueness of 

positive radially symmetric solutions of the Dirichlet problem for a nonlinear elliptic 

system. Farina [9] proved the symmetry result for the system, 

                           Δu = uv
2
; Δv = vu

2
; u  0; v  0 in R

n
: 

Damascelli and Pacella [4] proved solutions having Morse index j ≤ N are foliated 

schwartz symmetric by using symmetrization for a semilinear elliptic system. 

Recently Dhaigude and Patil [5] studied the radial symmetry of positive solutions of 

semilinear elliptic problem in unit ball. Also, Dhaigude and Patil [6], [7], [8] obtained 

symmetric results for semilinear elliptic boundary value problems and system of 

nonlinear boundary value problems, using moving plane method. 

 In this paper we study the radial symmetry of positive solutions for system of 

nonlinear elliptic boundary value problem in Rn. We consider the nonlinear elliptic 

boundary value problem of the form 

    u + f(  x  ; u ; v) = 0 

        in R
n 
                                (1.1) 

        v + g(  x  ; u ; v) = 0  
     and       

                   u(x)     0 ,  v(x)     0 as     x    .                          (1.2) 

These type of systems occur in many models of physics, where study of 

symmetry property is important.Our approach is based on the maximum principle 

in unbounded domains together with the moving plane method. This approach 

helps us to prove our results..We organise the paper as follows: In section 2, the 

preliminary results and some useful lemmas are proved. The symmetric result is 

proved and some illustrative examples are given in the last section. 

 

2.  Preliminaries  

In this section, _rst we state some basic lemmas and boundary maximum 

principle which are useful to prove our main result. 

 

Lemma 2.1 [12]Hopf boundary lemma : Suppose that Ω satisfies the interior sphere 

condition at x0   Ω . Let L be uniformly elliptic with c(x) ≤ 0 where 
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2

, 1 1

( )
( ) ( ) ( ) ( )

ij

n n

i

i j ji j j

x u
L u a x b x c x u

x x x
  in . 

If 2( ) ( )u C C satisfies L(u)  0 and 
0max ( ) ( )u x u x  , hen either u = u(x0) on Ω or 

0

0

( ) ( )
liminf 0

t

u x u x t

t
. For every direction ν pointing into an interior sphere. If 

1 {0}u C  then 
0( ) 0

u
x  

Lemma 2.2 [17] Let Ω be an unbounded domain in Rn, and let L denote the uni- 

formly elliptic differential operator of the form 

( ) ( ) ( ) ( ) ( )ij i

ij iL u a x u b x u c x u  

where  aij , bi , c  L  ( ). Suppose that u  0 satisfies 

L(u)  0 in Ω and u  0 on Ω: 

Furthermore, suppose that there exist a function w such that w > 0 on Ω  Ω and L(w) ≤ 0 

in Ω. 

 

If 
( )

0
( )

u x

w x
 as |x|  , x  , then u > 0  in . 

Theorem 2.1 [19] Let u(x) satisfies differential inequality 

                                  L(u)   0  

in a domain Ω where L is uniformly elliptic. If there exist a function w(x) such that, w(x) > 0 

on Ω Ω and satisfies the differential inequality 

    L(w) 0 in , 

then
( )

( )

u x

w x
  can not attain a non negative maximum at a point p on Ω, which lies on the 

boundary of a ball in Ω and if 
( )

( )

u x

w x
 is not constant then,

( ) 0
u

w   

                                  ( ) 0
u

w
      at P. 

where   is any outward directional derivative. 
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3. Main Results 

In this section, we prove our main result. We define the plane T , for a real number 

λ as follows T  = {x : x = (x1; x2; x3; :::; xn); x1 = λ} , which is perpendicular to X1-axis. 

We will move this plane continuously normal to itself to new position till it begins to 

intersect Ω. After that point the plane advances in Ω along X1- axis and cut of cap 

; which is the portion of Ω and lies in the same side of the plane T  as the 

original plane T. Let = { x : x1 < λ ; x  Ω}: Let xλ  = (2λ -  x1; x2; x3; :::; xn) be the 

reflection of the point x = (x1; x2; x3; :::; xn), about the plane T . Define w1;λ(x) = u(x) 

- u(xλ), and w2; λ (x) = v(x) - v(xλ). We have |xλ|   |x| and u(xλ) = u(2λ - x1; x2; x3; :::; 

xn). Also define set   = { λ  (0; ) : w1;λ(x) > 0;w2;λ (x) > 0}  for x  . 

Now, we prove our main result, 

 

Theorem 3.1 Suppose that 

⟨i⟩  (u; v)  C2  is a positive solution of the system of nonlinear elliptic boundary 

value problem (1.1)-(1.2), 

⟨ii⟩  functions f and g are continuous in all its variables and C1 in u  0, v  0, 

⟨iii⟩  f(|x|,  u(x); v(x1; x2; x3; :::; xi-1; 2λ -  xi; xi+1; :::xn))= f(|x|,  u(x); v(x1; x2; x3; :::; 

xi-1; xi; xi+1; :::xn))  , for all 1 ≤ i ≤ n, 

⟨iv⟩  g (|x| ; u(x1; x2; x3; :::; xi�1; 2λ -  xi; xi+1; :::; xn); v(x))  = g (|x| ; u(x1; x2; x3; 

:::; xi�1; xi; xi+1; :::; xn); v(x) ) for all 1 ≤ i ≤ n, 

⟨v⟩  functions f and g are nonincreasing in |x|, for each fixed u  0, v  0. 

  Further we define U ,V and   such as 

U(r) = sup {u(x) : |x|  r}                                                                                   (3.1) 

V (r) = sup{ v(x) : |x|  r}                                                                                  (3.2) 

(|x| ) = sup { fu(|x}; u; v); gv(|x|; u; v) : 0 ≤u(x) ≤ U(r); 0 ≤ v(x) ≤ V (r)}      (3.3) 

Furthermore assume that there exist positive functions z1; z2 on |x|  _ R0; for some 

positive constant R0 satisfying differential inequalities 

1 1(| |) 0z x z  

    In |x| >R0                                                             (3.4) 

      2 2(| |) 0z x z        

and        

http://www.universalprint.org/
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| |

1

( )
lim 0

( )x

U x

z x
                                                                                                 (3.5) 

                    
| |

2

( )
lim 0

( )x

V x

z x
                                                                                            (3.6) 

Then (u; v) is radially symmetric about some x0 in Rn and ur < 0, ur < 0 for 

r = |x -  x0|  > 0. 

To prove our result following lemmas are useful. First we prove them. 

Lemma 3.1 Let λ  0 , then w1;λ(x) and w2;λ(x) satisfies differential inequalities 

   1, 1, 1,( ) ( ) ( ) 0w x C x w x
     in  

    
2, 2, 2,( ) ( ) ( ) 0w x C x w x    in  

Where   

1,

1

0

( ) (| |, u(x ) + t[u(x) - u(x )]; v(x))
u

C x f x dt  

2,

1

0

( ) (| |, (x), v(x ) + t[v(x) - v(x )])
v

C x g x u dt  

Proof: Since f(|x|; u; v) and g(|x|; u; v) are nonincreasing in |x| and |xλ| > |x| for 

x    hold. We observe that u(xλ) and v(xλ)   satisfy the equations 

                      ( ) (| |, ( ), ( ) 0u x f x u x v x     in                         (3.7) 

                     ( ) (| |, ( ), ( ) 0v x g x u x v x     in                          (3.8)  

Subtracting (3.7) from first equation of (1.1) we get 

1, 1, 1,( ) ( ) ( ) 0w x C x w x    in  

where   

1,

1

0

( ) (| |, u(x ) + t[u(x) - u(x )]; v(x))
u

C x f x dt  

Similarly subtracting (3.8) from second equation of (1.1) we can prove that, 

2, 2, 2,( ) ( ) ( ) 0w x C x w x    in  

where  
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2,

1

0

( ) (| |, (x), v(x ) + t[v(x) - v(x )])
v

C x g x u dt  

The proof of the lemma is completed. 

Lemma 3.2 Let λ > 0, If 
1, ( )w x  > 0  , and w2,λ(x) > 0 in  

0B ,  Then . 

Proof: By using assumptions and lemma 3.1, we have 

                        
1, 1, 1,( ) ( ) ( ) 0w x C x w x  

                                                                               in \ 0B  

                         
2, 2, 2,( ) ( ) ( ) 0w x C x w x  

and   

1, ( )w x  > 0 , and w2,λ(x) > 0  on   ( \ 0B ). 

Since U(r) and V (r) are nonincreasing, we have 

 0 ( ) ( ( ) ( ) (| |)u x t u x u x U x  

                                                               0 ≤ t  ≤ 1 

      0 ( ) ( ( ) ( ) (| |)v x t v x v x V x  

Then we observe that 

1

1,

0

( ) (| |) (| |)C x x dt x    in  

Similarly we can show that, 
1

2,

0

( ) (| |) (| |)C x x dt x    in  

From (3.4) we have  

 
1 1, ( ) 0z C x   in \ 0B  

     
2 2, ( ) 0z C x   in \ 0B  

     and 

 1,

1

( )
0

( )

w x

z x
 ,   2,

2

( )
0

( )

w x

z x
    as |x| , for x  \ 0B  

Hence by Lemma (2.2) 

1, ( )w x  > 0  , and w2,λ(x) > 0  in  \ 0B . 

From this it follows that, 

1, ( )w x  > 0  , and w2,λ(x) > 0  in   

Therefore λ  .This completes the proof 
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Lemma 3.3 Let λ   , Then 
1

0
u

x
and 

1

0
v

x
on Tλ. 

Proof: By Lemma 3.1 we have 

1, 1, 1,( ) ( ) ( ) 0w x C x w x
     in  

    
2, 2, 2,( ) ( ) ( ) 0w x C x w x    in  

Since  
1, ( )w x  = 0 on Tλ by Hopf's boundary lemma we have 1,

1

( )
0

w x

x
 and 

2,

1

( )
0

w x

x
 on Tλ  . We have  2,

1 1

( )
2

w x v

x x
 and  2,

1 1

( )
2

w x v

x x
.  

Therefore  
1

u

x
 < 0 

1

u

x
 < 0 

Now we prove theorem3.1. 

Proof of the theorem: 

Since u(x); v(x) are positive with  

                             
| |
lim ( ) 0
x

u x  

and  

                             
| |
lim ( ) 0
x

v x  

then there exist R1;R2 > R0 such that 

1 0max{ ( ) :| | } min{ ( ) :| | }u x x R u x x R                                                       (3.9) 

2 0max{ ( ) :| | } min{ ( ) :| | }v x x R v x x R                                                     (3.10) 

                                        
1, ( )w x  > 0 ,  in 0B   

Also from equation (3.10) we get, 

                                     w2,λ(x) > 0, in 0B  

Then by Lemma 3.2 we have λ . Therefore [Rm; ) . Hence step-I is completed. 

Step-II: In this step we prove that, if λ0  then there exist  > 0 such that 

(λ0 -  ; λ0] . Assume to the contrary that there exist an increasing sequence {λi}, i = 

1; 2; 3; ::: such that λi  and λi  λ0 as i , which contradicts to Lemma 3.2. 

http://www.universalprint.org/
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Therefore we have a sequence {xi} i = 1; 2; 3; ::: such that 
0i ix B  and 

1, ( ) 0i iw x  or 
2, ( ) 0i iw x . A subsequence *{ }ix , converges to some point 

0 0 0x B . Then 
1, ( ) 0i iw x  or 

2, ( ) 0i iw x . But in 0 , we must have

1, 0 0( ) 0w x   and 0

0( ) ( )

i

i i

i

x x

y x

u x u x

. Therefore we conclude that 0 0x T . By mean value 

theorem, there exist a point yi   such that   

                                                   ( ) 0i

i

u
y

x
   

and 

                                                   ( ) 0i

i

v
y

x
 

on the line segment joining i

i ix x  for each i = 1; 2; 3; :::. Also 0iy x  as i . 

So 0

1

( ) 0
u

x
x

 and 0

1

( ) 0
v

x
x

 

But by Lemma 3.1 we have 

                       0

1

( ) 0
u

x
x

 

and 

                      0

1

( ) 0
v

x
x

 

which is a contradiction and step II is completed. 

 

Step-III: Consider the following two statements (A) and (B), 

(A) 1( ) ( )u x u x  and 1( ) ( )v x v x  for some λ1 > 0 and 
1

0
u

x
, 

1

0
v

x
 on Tλ for 1  

Or 

(B) 0( ) ( )u x u x  and 0( ) ( )v x v x  in  1  and 
1

0
u

x
, 

1

0
v

x
 on Tλ for λ > 0. 

We consider two cases (i)If λ1 > 0, then we prove that statement (A) holds. (ii) If λ1 = 

0, then we prove that statement (B) holds. 

Define  1 min{ 0 :[ , ) }. 

http://www.universalprint.org/
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Case (i) where λ1 > 0. 

We have 

              1

1, 1( ) ( ) ( )w x u x u x  

              1

2, 1( ) ( ) ( )w x v x v x  

From the continuity of u and v , we have 
1, 1( ) 0w x , 

2, 1( ) 0w x  in 1 . From 

lemma 3.1 it follows that 

                      
1, 1 1, 1 1, 1( ) ( ) ( ) 0w x c x w x  

       in 1  

           
2, 1 2, 1 2, 1( ) ( ) ( ) 0w x c x w x  

Hence by strong maximum principle we have either 
1, 1( ) 0w x , 

2, 1( ) 0w x  or  

1, 1( ) 0w x  ,
2, 1( ) 0w x  in 1  

Assume that 
1, 1( ) 0w x , 

2, 1( ) 0w x  in 1 , then by lemma 3.2, λ . From step-II 

there exists  > 0 such that (λ1 - , λ1]  . 

This is contradiction to the definition of λ1. Therefore 
1, 1( ) 0w x  ,

2, 1( ) 0w x  in 1 . 

Since  (λ1 ,  )   , we have 
1

0
u

x
, 

1

0
v

x
 on Tλ for 1 , by Lemma 3.3, the 

statement (A) is follows for case (i). 

 

Case (ii) Consider the case where λ1 = 0. From the continuity of u and v we have 

0 0( ) ( ), ( ) ( )u x u x v x v x  in 0 . By lemma 3.3 we get  
1

0
u

x
, 

1

0
v

x
 on Tλ for λ > 0. 

Thus statement (B) holds. 

If statement (B) occurs in step (III), we can repeat the previous steps I – III for 

negative X1-direction to conclude that either (u; v) is symmetric in X1-direction 

about some plane x1 = λ1 < 0. Therefore (u; v) 

must be symmetric in X1-direction about some plane and strictly decreasing away 

from the plane. As we may take any direction as the X1- direction , we conclude that 

(u; v) is symmetric in every direction about some plane. Therefore (u; v) is radially 

symmetric about some point  
0

n

x R , 
u

r
< 0 , 

v

r
 < 0 , for r > 0. 

Example 

Now, we discuss an example to illustrate theorem 3.1. 
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Example 3.1 Consider the elliptic system 

                        ( 3) 0u n v                                                                        (3.11) 

                       
2

3( 5) 0v n u v                                                                    (3.12) 

Here f(|x|, u , v) = (n - 3)v is linear and f(|x|, u , v) =  
2

3( 5)n u v  is nonlinear 

function.    

Clearly 2

2 3( 5)
(| |) 3( 5)

| |

n
x n u

x
 where 

1

| |
u

x
. Suppose 1 1

2

1
( )

| |

z x

x

, and 

2 2

1
( )

| |
z x

x
. Here z1(x) and z2(x) satisfies the inequalities (3.4). 

We also have, 
| |

1

( )
lim 0

( )x

u x

z x
 

Thus condition (3.5) is satisfied. similarly we can show that condition (3.6) holds for 

the function 
2 2

1
( )

| |
z x

x
. Thus all the conditions of theorem 3.1 are satisfied. 

Therefore solutions must be radially symmetric. Clearly this system of equations 

have radially symmetric solutions about the origin. 
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