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Abstract:-  

An attempt has been made to establish sufficient conditions for the existence of so- 

lutions for a class of Caputo fractional boundary value problems using fixed point 

theo-rems. Banach fixed point theorem, Schaufer’s fixed point theorem and Leray-

Schauder type nonlinear alternatve are used to obtain existence results. 
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1. Introduction: 

Fractional Differential equations have been recently proved to be an effective tool in 

the modeling of many phenomena in various branches of science and engineering. 

Numerous applications are found in control systems, visco-elasticity, 

electrochemistry, pharmacokinetics, food science, etc [1, 2, 3, 19]. Significant 

contributions in the study of fractional differential equations by researchers has been 

recorded in the monograph due to Kilbas et al [6]. Some recent results on the theory 

of fractional differential equations due to Lakshmikantham et. al. can be seen in [7, 8, 

9, 10]. Periodic boundary value problem, integral boundary value problem and 

initial value problem for fractional differential equations of order q, 0 < q < 1 was 

studied respectively by Ramirez and Vatsala [20], Wang and Xie [21] and Zhang [22]. 

Recently, author considered system of fractional differential equations with various 

type of conditions involving Riemann-Liouville fractional derivative and Caputo 

fractional derivative of order q, 0 < q < 1 and obtained existence and uniqueness 
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results via monotone method [4, 11, 12, 13, 14, 15, 16, 17, 18]. 

 

An attempt has been made to obtain sufficient conditions for the existence of 

solution of the following fractional differential equation involving Caputo derivative 

cDq u(t) = f (t, u(t)) on   J = [0, T ]              (1.1) 

 

with the boundary conditions 

u(0) = u0,   u′(0) = u1     u′′(0) = u2,   u′′′(0) = u3     uiv (0) = uT          (1.2) 

where cDq is the Caputo fractional derivative, f : J × R → R is a continuous function 

and u0, u1, u2, u3, uT are real constants. This is called fractional boundary value 

problem (BVP). 

 
2. Preliminaries 

Notation, definitions and preliminary results required in the later section are 

discussed here.C (J, R) denotes Banach space of all continuous functions from J into 

R with the norm 

∥ u ∥∞:= sup{| u(t) |: t ∈ J }. 

 

Definition 2.1 [3, 6] The fractional integral of a function u(t) of order q is denoted by 

I q u(t). It is defined as 

( )0

1
/ ( ) ( ) 1 ( )

t

qu t t s q s ds
q

u  

Definition 2.2 [3, 6] The Caputo fractional derivative of u(t) of order q is 

denoted by cDq u(t). It is defined as 

  
1

( ) ( )
)

1 ( , ,
( 0

)

t

c q Du t t s m q u s ds m m Z
q

m
m

 

Definition 2.3 A function u(t) ∈ C 4(J, R) with its q-derivative existing on J is said to 

be a solution of the problem if u(t) satisfies the equation 

( ) ( , ( )) [0, ]c Dq u t f t u t on j T  

and the initial conditions 

u(0) = u0,       u′(0) = u1,      u′′(0) = u2,     uiii(0) = u3       uiv (0) = uT . 

Following Lemmas play important role in the existence of solutions for the BVP 

(1.1)-(1.2). 
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Lemma 2.1 [2] Let q > 0, then the fractional differential equation 
cDq u(t) = 0 

has solution 

0( ) 0 1 2 2 3 3 ....
n

n n iu t c c t c t c t c t citi  

for some ci ∈ R, i = 0, 1, 2, ..., n, n = [q] + 1 

 

Lemma 2.2 [2] Let q > 0, then 

I q .cDq h(t) = c0 + c1t + c2t2 + ... + cntn 

for some ci ∈ R, i = 0, 1, 2, 3, ..., n, n = [q] + 1 

 

3. Existence Results 

Existence result of the BVP (1.1)-(1.2) which is an immediate consequence of Lemma 

2.1 and Lemma 2.2. 

Lemma 3.1 Let 4 < q ≤ 5 and let u(t) : J → R be continuous. A function u(t) is a 

solution of the fractional integral equation. 
4

1 5

0 0

1
( ) ( ) ( ) ( ) ( )

( )0 4! ( 4)

t T
q qt

u t t s u s ds T s u s ds
q q

           (3.1) 

3
2 3 42

0 1
2! 3! 4!

u u uT
u u t t t t  

if and only if u(t) is a solution of the fractional BVP 

cDq u(t) = h(t)           t ∈ J                  (3.2) 

u(0) = u0, u′(0) = u1  u′′(0) = u2 u′′′(0) = u3, uiv (0) = uT                         (3.3) 

Proof: Assume that u(t) satisfies (3.2). Applying Lemma 2.1, we obtain 

2 3 4 1

0 1 2 3 4
0

2 3 2

1 2 3 4
0

2 2 3

2 3 4
0

4

3 4
0

1
( ) ( ) ( ) ,

( )

1
'( ) 2 3 4 ( ) ( ) ,

( 1)

1
"( ) 2 6 4 ( ) ( ) ,

( 2)

1
"'( ) 6 4.3.2 ( ) ( ) ,

( 3)

( ) 4

t
q

t
q

t
q

t
q

iv

u t c c t c t c t c t t s h s ds
q

u t c c t c t c t t s h s ds
q

u t c t c t c t t s h s ds
q

u t c c t t s h s ds
q

u t 5

4
0

1
! ( ) ( ) ,

( 4)

t
qc t s h s ds

q  
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Using initial conditions, we get 

 

0 0 1 1

32
2 3

5

4
0

, ,

, ,
2 3!

1
( ) ( )

4! 4! ( 4)

T
qT

c u c u

uu
c c

u
c T s h s ds

q

 

Hence 

 

2 3 4 532 4
0 1

0

1

0

1
( ) ( ) ( )

2! 3! 4! 4! ( 4)

1
( ) ( )

( )

T
q

t
q

uu u
u t u u t t t t T s h s ds

q

t s h s ds
q

 

Conversely, assume that u(t) satisfies fractional integral equation (3.1), then by 

definition of Caputo derivative, it follows that equation (3.2) and equation (3.3) also 

holds. 

 

4 Main Results 

In this section we obtain results based on Banach fixed point theorem and Schaufer’s 

fixed point theorem. 

 

Following result is obtained by using Banach fixed point theorem. 

Theorem 4.1 Assume that there exists a constant k > 0 such that 
__ __

| ( , ) ( , ) | | |f t y f t y k y y  

__

, .for each t J and all y y If  

  
1 1

1,
( 1) 4! ( 4)

qkT
q q

              (4.1) 

 

then BVP (1.1)-(1.2) has a unique solution on J. 

Proof: Transform the problem (1.1)-(1.2) into a fixed point problem. Define the 

operator F : C(J,R) → C(J,R) by 
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1 5

0 0

2 3 432
0 1

1 1
( )( ) ( ) ( , ) ( ) ( , )

( ) 4! ( 4)

2! 3! 4!

t T
q q

T

F u t t s f s u ds T s f s u
q q

uu u
u u t t t t

 

Clearly, the fixed points of the operator F are solutions of the problem (1.1)-(1.2). We 

shall use the Banach contraction principle to prove that F has a fixed point. Now, we 

shall show that F is a contraction mapping. Let u, v  C(J,R). Then for each t  J , we 

have  

1

0

5

0

1

0

4
5

0

1
| ( )( ) ( )( ) | ( ) | ( , ( )) ( , ( )) |

( )

1
( ) | ( , ) ( , ) |

4! ( 4)

|| | ||
( )

( )

|| ||
( )

4! ( 4)

|| ||
( ) 4! ( 4)

1

( 1

t
q

T
q

t
q

T
q

q q

q

F u t F v t t s f s u s f s v s ds
q

T s f s u f s v ds
q

k u v
t s ds

q

k u v T
t s ds

q

kT kT
u v

q q q

kT
q

1
|| ||

) 4! ( 4)
u v

q

 

Thus 

1 1
|| ( )( ) ( )( ) || || || .

( 1) 4! ( 4)

qF u t F v t kT u v
q q

 

Consequently, by equation (4.1), F is a contraction. By Banach fixed point theorem, 

we claim that F has a fixed point which is a solution of the boundary value problem 

(1.1)-(1.2). 

Following result is based on Schaefer’s fixed point theorem: 

Theorem 4.2 Assume that 

(i) f : J × R → R is continuous 

(ii) There exists a constant M > 0 such that |f(t, u)| ≤ M for each t ∈ J and all u ∈ R. 

Then the BVP (1.1)-(1.2) has at least one solution on J. 
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Proof: We shall use Schaufer’s fixed point theorem to prove that F has a fixed point. 

Now we prove: 

(a) F is continuous: 

Let un be a sequence such that un → u in C(J,R). Then for each t ∈ J 

| 1

0

5

0

1
| ( )( ) ( )( ) | ( ) | ( , ( )) ( , ( )) |

( )

1
( ) | ( , ) ( , ) |

4! ( 4)

t
q

n n

T
q

n

F u t F u t t s f s u s f s u s ds
q

T s f s u f s u ds
q

 

Since f is continuous function, we have 

∥F(un − F(u)∥∞ → 0 as n → ∞. 

(b)F maps the bounded sets into the bounded sets in C (J, R): 

It is enough to show that for any η > 0 there exists positive constant l such that for 

each u ∈ Bη = {u ∈ C (J, R : ∥u∥∞ ≤ η} we have ∥F (u)∥∞ ≤ l. By assumption (ii), we 

have for each t ∈ J 

1 5

0 0

2 3 432
0 1

4
1 5

0 1
0 0

2 3 432

1 1
| ( )( ) | ( ) | ( , ) | ( ) | ( , ) |

( ) 4! ( 4)

| | | | | | | | | | |
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( ) ( ) | | | |
( ) 4! ( 4)

| | | | | |
2! 3! 4!

( 1)

t T
q q

T

t T
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T

q

F u t t s f s u ds T s f s u ds
q q

uu u
u u t t t t

M T M
t s ds T s ds u u T

q q

uu u
T T T

MT M

q

2 32
0 1| | | | | | | | :

( 4) 2! 3!

q

Tu uT
u u T T T t
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Thus 

2 3 432
0 1| ( )( ) | | | | | | | | | | | :

( 1) ( 2) 2! 3! 4!

q q

T
uu uMT MT

F u t u u T T T T t
q q

 

 

(c)F maps bounded sets into the equicontinuous sets C (J, R): 

Let t1, t2 ∈ J, t1 < t2, Bη be bounded set of C (J, R) as in (b) and let u ∈ Bη . Then 
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As t1 → t2, the right hand side of the above inequality tends to zero. Using Arzela-
Ascoli 
theroem, we conclude that F : C (J,R) → C(J,R) is completely continuous. 
(d) A priori bounds: 
Now we show that 

{ ( , ) : ( ) 0 1}E u C J u F u for some  

is bounded. 

Let u ∈ E, then u = λF(u) for some 0 < λ < 1. Thus for each t ∈ J we have 
4

1 5

0 0

2 3 432
0 1

1
( ) ( ) ( , ( )) ( ) ( , ( ))

( ) 4! ( 4)

2! 3! 4!

t T
q q

T

t
u t t s f s u s ds T s f s u s ds

q q

uu u
u u t t t t

 

This implies by assumption (ii) that for each t ∈ J we have 

2 3 432
0 0

|
| ( ) | | | | |

( ) ( 4) | ( 4) 2! 3! 4!

q q T
uu uM M

u t T T u u T T T T
q q q q

 

Thus for every t ∈ J we have 

2 3 432
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This shows that E is bounded. As a consequence of Schaefer’s fixed point theorem, 

we conclude that F has a fixed point which is a solution of the boundary value 

problem (1.1)-(1.2). 

Following existence result for the BVP (1.1)-(1.2) is obtained by using Leray-

Schauder type nonlinear alternative. 

 

Theorem 4.3 Assume that 

(i) f : J × R → R is continuous 

(ii) There exist ϕf ∈ L1(J,R+) and continuous and nondecreasing 

ψ:[0,∞)→ (0,∞) such that |f(t, u)| ≤ ϕf (t)ψ(|u|) for each t ∈ J and all u ∈ R. 

(iii) There exists a constant M > 0 such that 

1 2 3 42
0 1

1
| | | | | |

|| || ( ) | | | |
2 3 4

q T T
f

M

u u u
I L M P u u T T T T

            (4.2) 

3
3| ( )( ) ( )

3

qT
whereP I f T M  

Then the BVP (1.1)-(1.2) has at least one solution on J. 

Proof: Define the operator F as in Theorems 4.1 and 4.2. It can be shown that F is 

continuous and completely continuous. For λ∈ [0, 1], let u be such that for each t∈ J 
4
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2 3 432
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1
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| | | |
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3
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T
I T u Then by inequality (4.2), there exists M such that
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The operator F :  Y  → C(J,R) is continuous and completely continuous. By the choice 
of Y , there exists no u  ∂Y such that u = λF(u) for some λ  (0, 1). As a consequence 
of the nonlinear alternative of Leray-Schauder type [5], we deduce that F has a fixed 

point u in  Y , which is the solution of the BVP (1.1)-(1.2). 
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