

On $\alpha r \omega$ -separation axioms in topological spaces

R. S. Wali¹ and Prabhavati S. Mandalageri²

¹Department of Mathematics , Bhandari Rathi College , Guledagudd–587 203, Karnataka State, India ²Department of Mathematics, K.L.E'S , S.K. Arts College & H.S.K. Science Institute, Hubballi–31, Karnataka State, India

Abstract: The aim of this paper is to introduce and study two new classes of spaces, namely $\alpha r \omega$ -normal and $\alpha r \omega$ -regular spaces and obtained their properties by utilizing $\alpha r \omega$ -closed sets. Recall that a subset A of a topological space (X, τ) is called $\alpha r \omega$ -closed if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is rw- open in (X, τ). We will present some characterizations of $\alpha r \omega$ -normal and $\alpha r \omega$ -regular spaces.

Keywords: ar ω -closed set, ar ω -continuous function.

1 Introduction

Maheshwari and Prasad[8] introduced the new class of spaces called s-normal spaces using semi-open sets. It was further studied by Noiri and Popa[10],Dorsett[6] and Arya[1]. Munshi[9], introduced g-regular and g- normal spaces using g-closed sets of Levine[7]. Later, Benchalli et al [3] and Shik John[12] studied the concept of g^* – pre regular, g^* – pre normal and ω -normal, ω -regular spaces in topological spaces. Recently, Benchalli et al [2,] introduced and studied the properties of $\alpha r\omega$ -closed sets and $\alpha r\omega$ -continuous functions.

2 Preliminaries

Throughout this paper (X, τ), (Y, σ) (or simply X, Y) denote topological spaces on which no separation axioms are assumed unless explicitly stated. For a subset A of a space X the closure, interior and α -closure of A with respect to τ are denoted by cl(A), int(A) and α cl(A) respectively

Definition 2.1. A subset A of a topological space X is called a

(1) semi-open set [3] if $A \subseteq cl(int(A))$.

(2) ω -closed set[12] if cl(A) \subseteq U whenever A \subseteq U and U is semi-open in X.

(3) g-closed set[7] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.

International Journal of Universal Mathematics and Mathematical Sciences ISSN: 2454-7271 Volume: 02, Issue: 01, Pages:40-52, Published:June,2016 Web: <u>www.universalprint.org</u>,

Title Key: On $\alpha r \omega$ -separation axioms in ...

Definition 2.2. A topological space X is said to be a

- (1) g-regular[10], if for each g-closed set F of X and each point $x \notin F$, there exists disjoint open sets U and V such that $F \subseteq U$ and $x \in V$.
- (2) α -regular [4], if for each closed set F of X and each point $x \notin F$, there exists disjoint α open sets U and V such that $F \subseteq V$ and $x \in U$.
- (3) ω -regular[12], if for each ω -closed set F of X and each point $x \notin F$, there exists disjoint open sets U and V such that $F \subseteq U$ and $x \in V$.

Definition 2.3. A topological space X is said to be a

- (1) g-normal [10], if for any pair of disjoint g-closed sets A and B, there exists disjoint open sets U and V such that $A \subseteq U$ and $B \subseteq V$.
- (2) α -normal [4], if for any pair of disjoint closed sets A and B, there exists disjoint α -open sets U and V such that $A \subseteq U$ and $B \subseteq V$.
- (3) ω -normal [12], if for any pair of disjoint ω -closed sets A and B, there exists disjoint open sets U and V such that $A \subseteq U$ and $B \subseteq V$.

Definition 2.4. [2] A topological space X is called $T_{\alpha r\omega}$ -space if every $\alpha r\omega$ -closed set in it is closed set.

Definition 2.5. A function $f : X \rightarrow Y$ is called

- (1) arw-continuous [4] (resp. ω -continuous [12]) if f⁻¹(F) is arw-closed (resp. ω -closed) set in X for every closed set F of Y .
- (2) arw-irresolute [4] (resp. w-irresolute [12]) if f⁻¹ (F) is arw-closed (resp. w-closed set in X for every arw-closed (resp. w- closed) set F of Y.
- (3) pre- ω a-closed[4](resp. ar ω -closed[]) if for each a-closed (resp. closed) set F of X, f(F) is an ω a-closed (resp. ar ω -closed) set in Y.

Definition 2.6 A topological space X is called

- i) a α -T₀ [14] if for each pair of distinct points x, y of X, there exists a α -open sets G in X containing one of them and not the other.
- ii) a α -T₁ [14] if for each pair of distinct points x, y of X, there exists two α -open sets G₁, G₂ in X such that $x \in G_1$, $y \notin G_1$, and $y \in G_2$, $x \notin G_2$.
- iii) a α -T₂ [14] (α Hausdorff) if for each pair of distinct points x, y of X there exists distinct α -open sets H₁ and H₂ such that H₁ containing x but not y and H₂ containing y but not x.

3 αrω-Regular Space

In this section, we introduce a new class of spaces called $\alpha r \omega$ -regular spaces using $\alpha r \omega$ -closed sets and obtain some of their characterizations

Definition 3.1. A topological space X is said to be $\alpha r \omega$ -regular if for each $\alpha r \omega$ closed set F and a point $x \notin F$, there exist disjoint open sets G and H such that $F \subseteq$ G and $x \in H$.

We have the following interrelationship between $\alpha r \omega$ -regularity and regularity.

Theorem 3.2. Every αrω–regular space is regular.

Proof: Let X be a $\alpha r \omega$ -regular space. Let F be any closed set in X and a point $x \in X$ such that $x \notin F$. By [2], F is $\alpha r \omega$ -closed and $x \notin F$. Since X is a $\alpha r \omega$ -regular space, there exists a pair of disjoint open sets G and H such that $F \subseteq G$ and $x \in H$. Hence X is a regular space.

Theorem 3.3. If X is a regular space and $T_{\alpha r \omega}$ - space, then X is $\alpha r \omega$ - regular. **Proof:** Let X be a regular space and $T_{\alpha r \omega}$ - space. Let F be any $\alpha r \omega$ -closed set in X and a point $x \in X$ such that $x \notin F$. Since X is $T_{\alpha r \omega}$ - space, F is closed and $x \notin F$. Since X is a regular space, there exists a pair of disjoint open sets G and H such that $F \subseteq G$ and $x \in H$. Hence X is a $\alpha r \omega$ -regular space

Theorem 3.4. Every $\alpha r \omega$ -regular space is α -regular.

Proof: Let X be a $\alpha r \omega$ -regular space. Let F be any α -closed set in X and a point $x \in X$ such that $x \notin F$. By [2], F is $\alpha r \omega$ -closed and $x \notin F$. Since X is a $\alpha r \omega$ -regular space, there exists a pair of disjoint open sets G and H such that $F \subseteq G$ and $x \in H$. Hence X is a α -regular space.

We have the following characterization.

Theorem 3.5. The following statements are equivalent for a topological space X

- i) X is a $\alpha r \omega$ regular space.
- ii) For each $x \in X$ and each $\alpha r \omega$ -open neighbourhood U of x there exists an open neighbourhood N of x such that $cl(N) \subseteq U$.

Proof: (i) => (ii): Suppose X is a $\alpha r \omega$ -regular space. Let U be any $\alpha r \omega$ neighbourhood of x. Then there exists $\alpha r \omega$ -open set G such that $x \in G \subseteq U$. Now X - G is $\alpha r \omega$ -closed set and $x \notin X$ – G. Since X is $\alpha r \omega$ -regular, there exist open sets M

Title Key: On $\alpha r \omega$ -separation axioms in ...

and N such that $X - G \subseteq M$, $x \in N$ and $M \cap N = \phi$ and so $N \subseteq X - M$. Now $cl(N) \subseteq cl(X - M) = X$ -M and $X - G \subseteq M$. This implies $X - M \subseteq G \subseteq U$. Therefore $cl(N) \subseteq U$.

(ii) => (i): Let F be any $\alpha r \omega$ - closed set in X and $x \notin F$ or $x \in X$ -F and X -F is a $\alpha r \omega$ open and so X -F is a $\alpha r \omega$ - neighbourhood of x. By hypothesis, there exists an open neighbourhood N of x such that $x \in N$ and $cl(N) \subseteq X$ -F. This implies $F \subseteq X - cl(N)$ is an open set containing F and N $\cap \{(X - cl(N)\} = \varphi\}$. Hence X is rw - regular space.

We have another characterization of $\alpha r \omega$ - regularity in the following.

Theorem 3.6. A topological space X is $ar\omega$ -regular if and only if for each $ar\omega$ -closed set F of X and each $x \in X$ –F there exist open sets G and H of X such that $x \in G$, F \subseteq H and $cl(G) \cap cl(H) = \phi$.

Proof: Suppose X is ar ω - regular space. Let F be a ar ω -closed set in X with $x \notin F$. Then there exists open sets M and H of X such that $x \in M$, $F \subseteq H$ and M $\cap H = \phi$. This implies M \cap cl(H) = ϕ . As X is ar ω -regular, there exist open sets U and V such that $x \in U$, cl(H) \subseteq V and U \cap V = ϕ , so cl(U) \cap V = ϕ . Let G = M \cap U, then G and H are open sets of X such that $x \in G$, $F \subseteq H$ and cl(H) \cap cl(H) = ϕ .

Conversely, if for each $ar\omega$ -closed set F of X and each x ϵ X-F there exists open sets G and H such that x ϵ G, F \subseteq H and cl(H) \cap cl(H) = Φ . This implies x ϵ G, F \subseteq H and G \cap H = ϕ . Hence X is ar ω - regular.

Now we prove that $\alpha r \omega$ -regularity is a hereditary property.

Theorem 3.7. Every subspace of a $ar\omega$ -regular space is $ar\omega$ -regular.

Proof: Let X be a $ar\omega$ -regular space. Let Y be a subspace of X. Let $x \in Y$ and F be a $ar\omega$ - closed set in Y such that $x \notin F$. Then there is a closed set and so $ar\omega$ -closed set A of X with $F = Y \cap A$ and $x \notin A$. Therefore we have $x \in X$, A is $ar\omega$ -closed in X such that $x \notin A$. Since X is $ar\omega$ -regular, there exist open sets G and H such that $x \in G$, A \subseteq H and $G \cap H = \Phi$. Note that $Y \cap G$ and $Y \cap H$ are open sets in Y. Also $x \in G$ and $x \in Y$, which implies $x \in Y \cap G$ and $A \subseteq H$ implies $Y \cap A \subseteq Y \cap H$, $F \subseteq Y \cap H$. Also $(Y \cap G) \cap (Y \cap H) = \Phi$. Hence Y is $ar\omega$ -regular space.

We have yet another characterization of $\alpha r \omega$ -regularity in the following.

Theorem 3.8. The following statements about a topological space X are equivalent:

- (i) X is arw-regular
- (ii) For each $x \in X$ and each $\alpha r \omega$ -open set U in X such that $x \in U$ there exists an open set V in X such that $x \in V \subseteq cl(V) \subseteq U$
- (iii) For each point $x \in X$ and for each $ar\omega$ -closed set A with $x \notin A$, there exists an open set V containing x such that $cl(V) \cap A = \Phi$.

Proof: (i)=> (ii): Follows from Theorem 3.5.

(ii) => (iii): Suppose (ii) holds. Let $x \in X$ and A be an $\alpha r \omega$ - closed set of X such that $x \notin A$. Then X -A is a $\alpha r \omega$ -open set with $x \in X$ -A. By hypothesis, there exists an open set V such that $x \in V \subseteq cl(V) \subseteq X$ -A. That is $x \in V$, $V \subseteq cl(A)$ and $cl(A) \subseteq X$ -A. So $x \in V$ and $cl(V) \cap A = \Phi$.

(iii) => (ii): Let $x \in X$ and U be an $\alpha r \omega$ -open set in X such that $x \in U$. Then X -U is an $\alpha r \omega$ -closed set and $x \notin X$ -U. Then by hypothesis, there exists an open set V containing x such that $cl(V) \cap (X - U) = \Phi$. Therefore $x \in V$, $cl(V) \subseteq U$ so $x \in V \subseteq cl(V) \subseteq U$.

The invariance of $\alpha r \omega$ - regularity is given in the following.

Theorem 3.9. Let $f : X \to Y$ be a bijective, $\alpha r \omega$ -irresolute and open map from a $\alpha r \omega$ -regular space X into a topological space Y, then Y is $\alpha r \omega$ -regular.

Proof: Let $y \in Y$ and F be a $\alpha r \omega$ -closed set in Y with $y \notin F$. Since f is $\alpha r \omega$ -irresolute, f⁻¹(F) is $\alpha r \omega$ -closed set in X. Let f(x) = y so that $x = f^{-1}(y)$ and $x \notin f^{-1}(F)$. Again X is $\alpha r \omega$ -regular space, there exist open sets U and V such that $x \in U$ and $f^{-1}(F) \subseteq G$, $U \cap V = \Phi$. Since f is open and bijective, we have $y \in f(U)$, $F \subseteq f(V)$ and $f(U) \cap f(V) = f(U \cap V) = f(\Phi) = \Phi$. Hence Y is $\alpha r \omega$ -regular space.

Theorem 3.10. Let $f : X \to Y$ be a bijective, $ar\omega$ -closed map from a topological space X into a $ar\omega$ -regular space Y. If X is $T_{ar\omega}$ -space, then X is $ar\omega$ -regular.

Proof: Let $x \in X$ and F be an $\alpha r \omega$ -closed set in X with $x \notin F$. Since X is $T_{\alpha r \omega}$ -space, F is closed in X. Then f(F) is $\alpha r \omega$ -closed set with $f(x) \notin f(F)$ in Y, since f is $\alpha r \omega$ -closed. As Y is $\alpha r \omega$ -regular, there exist disjoint open sets U and V such that $f(x) \in U$ and $f(F) \subseteq V$. Therefore $x \in f^{-1}(U)$ and $F \subseteq f^{-1}(V)$. Hence X is $\alpha r \omega$ -regular space.

4 αrω-Normal Spaces

In this section, we introduce the concept of $ar\omega$ - normal spaces and study some of their characterizations.

Definition 4.1. A topological space X is said to be $\alpha r \omega$ -normal if for each pair of disjoint $\alpha r \omega$ - closed sets A and B in X, there exists a pair of disjoint open sets U and V in X such that $A \subseteq U$ and $B \subseteq V$.

We have the following interrelationship.

Theorem 4.2. Every αrω–normal space is normal.

Proof: Let X be a $\alpha r \omega$ -normal space. Let A and B be a pair of disjoint closed sets in X. From [2], A and B are $\alpha r \omega$ -closed sets in X. Since X is $\alpha r \omega$ -normal, there exists a pair of disjoint open sets G and H in X such that $A \subseteq G$ and $B \subseteq H$. Hence X is normal.

Remark 4.3. The converse need not be true in general as seen from the following example.

Example 4.4. Let Let $X=\{a,b,c,d\}$, $\tau=\{X, \Box, \{a\},\{b\},\{a,b\},\{a,b,c\}\}$ Then the space X is normal but not $\alpha r \omega$ -normal, since the pair of disjoint $\alpha r \omega$ -closed sets namely, A = {c} and B = {d} for which there do not exists disjoint open sets G and H such that A \subseteq G and B \subseteq H.

Theorem 4.4. If X is normal and $T_{\alpha r \omega}$ -space, then X is $\alpha r \omega$ -normal.

Proof: Let X be a normal space. Let A and B be a pair of disjoint $\alpha r \omega$ -closed sets in X. since $T_{\alpha r \omega}$ -space, A and B are closed sets in X. Since X normal, there exists a pair of disjoint open sets G and H in X such that $A \subseteq G$ and $B \subseteq H$. Hence X is $\alpha r \omega$ -normal.

Theorem 4.5. Every $\alpha r \omega$ -normal space is ω -normal.

Proof: Let X be a $\alpha r \omega$ -normal space. Let A and B be a pair of disjoint ω -closed sets in X. From [2], A and B are $\alpha r \omega$ -closed sets in X. Since X is $\alpha r \omega$ -normal, there exists a pair of disjoint open sets G and H in X such that A \subseteq G and B \subseteq H. Hence X is ω -normal.

International Journal of Universal Mathematics and Mathematical Sciences ISSN: 2454-7271 Volume: 02, Issue: 01, Pages:40-52, Published June 2016 Web unreception of the second

Published:June,2016 Web: www.universalprint.org , Title Key: On $\alpha r \omega$ -separation axioms in ...

Hereditary property of $\alpha r \omega$ -normality is given in the following.

Theorem 4.6. A $\alpha r \omega$ -closed subspace of a $\alpha r \omega$ -normal space is $\alpha r \omega$ -normal.

Proof: Let X a be ar ω -normal space. Let Y be a rw-closed subspace of X. Let A and B be pair of disjoint rw-closed sets in Y. Then A and B be pair of disjoint rw-closed sets in X. Since X is ar ω -normal, there exist disjoint open sets G and H in X such that $A \subseteq G$ and $B \subseteq H$. Since G and H are open in X, Y \cap G and Y \cap H are open in Y. Also we have $A \subseteq G$ and $B \subseteq H$ implies Y $\cap A \subseteq Y \cap G$, Y $\cap B \subseteq Y \cap H$. So $A \subseteq Y \cap G$ and $B \subseteq Y \cap H$ and $(Y \cap G) \cap (Y \cap H) = Y \cap (G \cap H) = \phi$. Hence Y is ar ω -normal.

We have the following characterization.

Theorem 4.7. The following statements for a topological space X are equivalent:

- i) X is αrω–normal.
- ii) For each $\alpha r \omega$ -closed set A and each $\alpha r \omega$ -open set U such that $A \subseteq U$, there exists an open set V such that $A \subseteq V \subseteq cl(V) \subseteq U$
- iii) For any disjoint $ar\omega$ -closed sets A, B, there exists an open set V such that $A \subseteq V$ and $cl(V) \cap B = \Phi$
- iv) For each pair A, B of disjoint $\alpha r \omega$ -closed sets there exist open sets U and V such that $A \subseteq U$, $B \subseteq V$ and $cl(U) \cap cl(V) = \Phi$.

Proof: (i) => (ii): Let A be a $\alpha r \omega$ -closed set and U be a $\alpha r \omega$ -open set such that $A \subseteq U$. Then A and X -U are disjoint $\alpha r \omega$ -closed sets in X. Since X is $\alpha r \omega$ -normal , there exists a pair of disjoint open sets V and W in X such that $A \subseteq V$ and X -U $\subseteq W$. Now X -W \subseteq X - (X -U), so X -W \subseteq U also V $\cap W = \Phi$ implies $V \subseteq X$ -W, so cl (V) \subseteq cl(X -W) which implies cl(V) \subseteq X - W. Therefore cl(V) \subseteq X - W \subseteq U. So cl (V) \subseteq U. Hence $A \subseteq V \subseteq$ cl(V) \subseteq U.

(ii)=>(iii): Let A and B be a pair of disjoint $\alpha r \omega$ - closed sets in X. Now $A \cap B = \Phi$, so A $\subseteq X - B$, where A is $\alpha r \omega$ -closed and X - B is $\alpha r \omega$ -open. Then by (ii) there exists an open set V such that $A \subseteq V \subseteq cl(V) \subseteq X - B$. Now $cl(V) \subseteq X - B$ implies $cl(V) \cap B = \Phi$. Thus $A \subseteq V$ and $cl(V) \cap B = \Phi$

(iii) =>(iv): Let A and B be a pair of disjoint $\alpha r \omega$ -closed sets in X. Then from (iii) there exists an open set U such that $A \subseteq U$ and $cl(U) \cap B = \Phi$. Since cl(V) is closed, so

arω-closed set. Therefore cl(V) and B are disjoint arω-closed sets in X. By hypothesis, there exists an open set V, such that B ⊆ V and cl(U) ∩ cl(V) = Φ.

(iv) => (i): Let A and B be a pair of disjoint $\alpha r \omega$ -closed sets in X. Then from (iv) there exist an open sets U and V in X such that $A \subseteq U$, $B \subseteq V$ and $cl(U) \cap cl(V) = \Phi$. So $A \subseteq U$, $B \subseteq V$ and $U \cap V = \Phi$. Hence X $\alpha r \omega$ - normal.

Theorem 4.8. Let X be a topological space. Then X is $\alpha r \omega$ -normal if and only if for any pair A, B of disjoint $\alpha r \omega$ -closed sets there exist open sets U and V of X such that $A \subseteq U$, $B \subseteq V$ and $cl(U) \cap cl(V) = \Phi$.

Proof: Follows from **Theorem 4.7**.

Theorem 4.9. Let X be a topological space. Then the following are equivalent:

- (i) X is normal
- (ii) For any disjoint closed sets A and B, there exist disjoint $ar\omega$ -open sets U and V such that $A \subseteq U$, $B \subseteq V$.
- (iii) For any closed set A and any open set V such that $A \subseteq V$, there exists an $\alpha r \omega$ -open set U of X such that $A \subseteq U \subseteq \alpha cl(U) \subseteq V$.

Proof: (i) =>(ii): Suppose X is normal. Since every open set is $ar\omega$ -open [2], (ii) follows.

(ii)=>(iii): Suppose (ii) holds. Let A be a closed set and V be an open set containing A. Then A and X –V are disjoint closed sets. By (ii), there exist disjoint ar ω -open sets U and W such that A \subseteq U and X–V \subseteq W, since X –V is closed, so ar ω -closed. From Theorem 2.3.14 [2], we have X –V \subseteq aint(W) and U \cap aint(W) = Φ and so we have cl(U) \cap aint(W) = Φ . Hence A \subseteq U \subseteq acl(U) \subseteq X –aint(W) \subseteq V. Thus A \subseteq U \subseteq acl(U) \subseteq V.

(iii) =>(i): Let A and B be a pair of disjoint closed sets of X. Then $A \subseteq X$ -B and X-B is open. There exists a $\alpha \omega$ -open set G of X such that $A \subseteq G \subseteq \alpha cl(G) \subseteq X$ -B. Since A is closed, it is $\alpha \omega$ -closed, we have $A \subseteq int(G)$. Take U = $int(cl(int(\alpha int(G))))$ and V = $int(cl(int(X - \alpha cl(G))))$. Then U and V are disjoint open sets of X such that $A \subseteq U$ and $B \subseteq V$. Hence X is normal.

Theorem 4.10. If $f : X \to Y$ is bijective , open ,ar ω -irresolute from a ar ω -normal space X onto Y then is ar ω -normal.

Title Key: On $\alpha r \omega$ -separation axioms in ...

Proof: Let A and B be disjoint $ar\omega$ -closed sets in Y. Then f⁻¹(A) and f⁻¹(B) are disjoint rw-closed sets in X as f is $ar\omega$ -irresolute. Since X is $ar\omega$ -normal, there exist disjoint open sets G and H in X such that $f^{-1}(A) \subseteq G$ and $f^{-1}(B) \subseteq H$. As f is bijective and open, f(G) and f(H) are disjoint open sets in Y such that $A \subseteq f(G)$ and $B \subseteq f(H)$. Hence Y is $ar\omega$ -normal.

5 αrω-T_k Space (k=0,1,2)

Definition 5.1 A topological space X is called

- i) a $\alpha r \omega T_0$ if for each pair of distinct points x, y of X, there exists a $\alpha r \omega$ -open sets G in X containing one of them and not the other.
- ii) a $ar\omega-T_1$ if for each pair of distinct points x, y of X, there exists two $ar\omega$ open sets G_1, G_2 in X such that $x \in G_1$, $y \notin G_1$, and $y \in G_2$, $x \notin G_2$.
- iii) a $\alpha r \omega T_2$ ($\alpha r \omega$ Hausdorff) if for each pair of distinct points x, y of X there exists distinct $\alpha r \omega$ -open sets H₁ and H₂ such that H1 containing x but not y and H₂ containing y but not x.

Theorem 5.2

- (i) Every T_0 space is $\alpha r \omega T_0$ space.
- (ii) Every T_1 space is $ar\omega T_0$ space.
- (iii) Every T_1 space is $\alpha r \omega T_1$ space.
- (iv) Every T_2 space is $ar\omega$ - T_2 space.
- (v) Every $\alpha r \omega T_1$ space is $\alpha r \omega T_0$ space.
- (vi) Every $\alpha r \omega T_2$ space is $\alpha r \omega T_1$ space.

Proof: Straight forward.

The converse of the theorem need not be true as in the examples.

Example 5.3 Let $X = \{a, b, c, d\}$ and $\tau = \{X, \Phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$.

Then $\alpha r \omega C(X) = \{\Phi, X, \{c\}, \{d\}, \{a, d\}, \{b, d\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}, \{a, b, d\}\}.$

 $ar\omega O(X) = \{ X, \Phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}, \{a, b, d\} \}.$

Here (X, τ) is ar ω -T₀ space but not T₀ space and not ar ω -T₁ space.

Example 5.4 Let X= {a, b, c, d} and $\tau = \{X, \Phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}.$ Then $\alpha r \omega C(X) = \{\Phi, X, \{c\}, \{d\}, \{a, d\}, \{b, d\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}, \{a, b, d\}\}.$ $\alpha r \omega O(X) = \{X, \Phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\{a, b, d\}\}.$ Here (X, τ) is $\alpha r \omega - T_1$ space but not T_1 space and not $\alpha r \omega - T_2$ space.

Theorem 5.5

- (i) Every α -T₀ space is $\alpha r \omega$ -T₀ space.
- (ii) Every α -T₁ space is $\alpha r \omega$ -T₀ space.
- (iii) Every α -T₁ space is $\alpha r \omega$ -T₁ space.
- (iv) Every α -T₂ space is $\alpha r \omega$ -T₂ space.

Proof: i) For each pair of distinct points x, y of X. Since α -T₀ space, there exists a α -open sets G in X containing one of them and not the other. But every α -open is $\alpha r\omega$ -open then there exists a α -open sets G in X containing one of them and not the other. Therefore $\alpha r\omega$ -T₀ space.

ii) Since α -T₁ space , but every α -T₁ space is α -T₀ space and also from Theorem5.5(i) . Therefore $\alpha r \omega$ -T₀ space.

iii) and (iv) similarly we can prove.

Theorem 5.6 Let X be a topological space and Y is an $\alpha r \omega$ -T₀ space. If f: X \rightarrow Y is injective and $\alpha r \omega$ - irresolute then X is $\alpha r \omega$ - T₀ space.

Proof: Suppose x, $y \in X$ such that $x \neq y$. Since f is injective then $f(x) \neq f(y)$. Since Y is $ar\omega$ - T_0 space then there exists a $ar\omega$ -open sets U in Y such that $f(x)\in U$, $f(y)\notin U$ or there exists a $ar\omega$ -open sets V in Y such that $f(y)\in V$, $f(x)\notin V$ with $f(x)\neq f(y)$. Since f is $ar\omega$ -irresolute then $f^{-1}(U)$ is a $ar\omega$ -open sets in X such that $x \in f^{-1}(U)$, $y \notin f^{-1}(U)$ or $f^{-1}(V)$ is a $ar\omega$ -open sets in X such that $y \in f^{-1}(V)$. Hence X is $ar\omega$ - T_0 space.

Theorem 5.7 Let X be a topological space and Y is an $ar\omega$ -T₂ space. If f: X \rightarrow Y is injective and $ar\omega$ - irresolute then X is $ar\omega$ - T₂ space.

Proof: Suppose x, $y \in X$ such that $x \neq y$. Since f is injective then $f(x) \neq f(y)$. Since Y is $ar\omega - T_2$ space then there are two $ar\omega$ -open sets U and V in Y such that $f(x) \in U$, $f(y) \in V$ and $U \cap V = \Phi$. Since f is $ar\omega$ - irresolute then $f^{-1}(U)$, $f^{-1}(V)$ are two $ar\omega$ - open sets in X, $x \in f^{-1}(U)$, $y \in f^{-1}(V)$, $f^{-1}(U) \cap f^{-1}(V) = \Phi$. Hence X is $ar\omega - T_2$ space.

Theorem 5.8 Let X be a topological space and Y is an $\alpha r \omega - T_1$ space. If f: X \rightarrow Y is injective and $\alpha r \omega$ - irresolute then X is $\alpha r \omega - T_1$ space. **Proof:** Similarly to Theorem 5.7.

Theorem 5.9 Let X be a topological space and Y is an T₂ space. If $f: X \to Y$ is injective and ar ω - continuous then X is ar ω -T₂ space.

Proof: Suppose x, $y \in X$ such that $x \neq y$. Since f is injective, then $f(x)\neq f(y)$. Since Y is an T_2 space, then there are two open sets U and V in Y such that $f(x)\in U$, $f(y)\in V$ and $U\cap V = \Phi$. Since f is $\alpha r \omega$ - continuous then $f^{-1}(U)$, $f^{-1}(V)$ are two $\alpha r \omega$ - open sets in X. Then $x \in f^{-1}(U)$, $y \in f^{-1}(V)$, $f^{-1}(U) \cap f^{-1}(V) = \Phi$. Hence X is $\alpha r \omega - T_2$ space.

Theorem 5.10 (X, τ) is ar ω -T₀ space if and only if for each pair of distinct x, y of X, ar ω -cl({x}) \neq ar ω -cl({y}).

Proof: Let (X,τ) be a $\alpha r \omega$ -T0 space. Let $x, y \in X$ such that $x \neq y$, then there exists a $\alpha r \omega$ -open set V containing one of the points but not the other, say $x \in V$ and $y \notin V$. Then V^c is a $\alpha r \omega$ -closed containing y but not x. But $\alpha r \omega$ -cl({y}) is the smallest $\alpha r \omega$ -closed set containing y. Therefore $\alpha r \omega$ -cl({y}) $\subset V^c$ and hence $x \notin \alpha r \omega$ -cl({y}). Thus $\alpha r \omega$ -cl({x}) $\neq \alpha r \omega$ -cl({y}).

Conversely, suppose x, $y \in X$, $x \neq y$ and $\alpha r \omega - cl(\{x\}) \neq \alpha r \omega - cl(\{y\})$. Let $z \in X$ such that $z \in \alpha r \omega - cl(\{x\})$ but $z \notin \alpha r \omega - cl(\{y\})$. If $x \in \alpha r \omega - cl(\{y\})$ then $\alpha r \omega - cl(\{x\}) \subset \alpha r \omega - cl(\{y\})$ and hence $z \in \alpha r \omega - cl(\{y\})$. This is a contradiction. Therefore $x \notin \alpha r \omega - cl(\{y\})$. That is $x \in (\alpha r \omega - cl(\{y\}))^c$. Therefore $(\alpha r \omega - cl(\{y\}))^c$ is a $\alpha r \omega$ - open set containing x but not y. Hence (X, τ) is $\alpha r \omega - T_0$ space.

Theorem 5.11 A topological space X is $ar\omega$ -T₁ space if and only if for every $x \in X$ singleton {x} is $ar\omega$ - closed set in X.

Proof: Let X be $ar\omega-T_1$ space and let $x\in X$, to prove that $\{x\}$ is $ar\omega$ -closed set. We will prove X- $\{x\}$ is $ar\omega$ - open set in X. Let $y \in X-\{x\}$, implies $x\neq y \in \Box$ and since X is $ar\omega$ - T_1 space then their exit two $ar\omega$ - open sets G_1 , G_2 such that $x\notin G_1$, $y\in G_2 \subseteq X-\{x\}$. Since $y\in G_2 \subseteq X-\{x\}$ then X- $\{x\}$ is $ar\omega$ - open set. Hence $\{x\}$ is $ar\omega$ -closed set. Conversely, Let $x\neq y \in X$ then $\{x\}$, $\{y\}$ are $ar\omega$ - closed sets. That is X- $\{x\}$ is $ar\omega$ -open set. Clearly, $x\notin X-\{x\}$ and $y\in X-\{x\}$.Similarly X- $\{y\}$ is $ar\omega$ - open set, $y\notin X-\{y\}$ and $x\in X-\{y\}$. Hence X is $ar\omega-T_1$ space.

Theorem 5.12 For a topological space (X, τ) , the following are equivalent

(i) (X, τ) is ar ω -T₂ space.

(ii) If $x \in X$, then for each $y \neq x$, there is a $\alpha r \omega$ -open set U containing x such that $y \notin \alpha r \omega$ -cl(U)

Proof: (i) \Rightarrow (ii) Let x \in X. If y \in X is such that y \neq x there exists disjoint ar ω -open sets U and V such that x \in U and y \in V. Then x \in U \subset X-V which implies X-V is ar ω - open and y \notin X-V. Therefore y \notin ar ω -cl(U).

(ii) \Rightarrow (i) Let $x, y \in X$ and $x \neq y$. By (ii) ,there exists a $\alpha r \omega$ - open U containing x such that $y \notin \alpha r \omega$ -cl(U). Therefore $y \in X$ -($\alpha r \omega$ -cl(U)). X-($\alpha r \omega$ -cl(U)) is $\alpha r \omega$ -open and $x \notin X$ -($\alpha r \omega$ -cl(U)). Also U $\cap X$ -($\alpha r \omega$ - cl(U))= Φ . Hence (X, τ) is $\alpha r \omega$ -T₂ space.

Theorem 5.13 Let X be a topological space. If X is a $\alpha r \omega$ -regular and a T₁ space then X is an $\alpha r \omega$ -T₂ space.

Proof: Suppose x, $y \in X$ such that $x \neq y$. Since X is T_1 - space then there is an open set U such that $x \in U$, $y \notin U$. Since X is $\alpha r \omega$ -regular space and U is an open set which contains x, then there is $\alpha r \omega$ -open set V such that $x \in V \subset \alpha r \omega$ -cl(V) $\subseteq U$. Since $y \notin U$, hence $y \notin \alpha r \omega$ -cl(V). Therefore $y \in X$ -($\alpha r \omega$ -cl(V)). Hence there are $\alpha r \omega$ -open sets V and X-($\alpha r \omega$ -cl(V)) such that (X-($\alpha r \omega$ -cl(V))) $\cap V = \Phi$. Hence X is $\alpha r \omega$ -T₂ space.

References

- 1. S.P. Arya and T.M. Nour, *Characterization of s– normal spaces*, Indian. J.Pure and Appl. Math., 21(8),(1990), 717–719.
- 2. R.S Wali and Prabhavati S Mandalgeri, *On a regular* ω*–closed sets inTopological spaces*, Int. J. of Math Archive 5(10), 2014, 68–76
- 3. S.S. Benchalli, T.D. Rayanagoudar and P.G. Patil, *g*– Pre Regular and g*–Pre Normal Spaces*, Int. Math. Forum 4/48(2010) 2399–2408.
- 4. R.S.Wali & P.S. Mandalgeri , On arω-Continuous and arω-Irresolute Maps in Topological Spaces , IOSR-JM, Volume 10, Issue 6 Ver. VI (2014), PP 14-24
- 5. R. Devi, *Studies on Generalizations of Closed Maps and Homeomorpisms in Topological Spaces*, Ph.D. thesis, Bharatiyar University, Coimbatore (1994).
- 6. C. Dorsett, Semi normal Spaces, Kyungpook Math. J. 25 (1985) 173-180.
- N. Levine, Generalized Closed sets in Topology, Rendi. Circ. Math. Palermo 19/2 (1970) 89–96.
- 8. S.N. Maheshwar and R. Prasad, *On s–normal spaces*, Bull. Math. Soc. Sci. Math. R.S. Roumanie 22 (1978) 27–28.
- 9. B.M. Munshi, Separation axioms, Acta Ciencia Indica 12 (1986) 140–146.
- 10. T. Noiri and V. Popa, *On g–regular spaces and some functions*, Mem. Fac. Sci. Kochi Univ. Math 20 (1999)67–74.

- 11. R. S. Wali & P.S. Mandalgeri, *On a Regular* ω*-open sets in topological spaces*, J. of comp & Math Sci., Vol 5(6), 2014, pp 490–499
- 12. M.S. John, A Study on Generalizations of Closed Sets and Continuous Maps in Topological and Bitopological spaces, Ph.D. Thesis, Bharathiar University, Coimbatore (2002).
- 13. R. S. Wali & P.S. Mandalgeri, *On On arω–closed and arω–open maps in Topological Spaces,* Int Journal of Applied Research 2015; 1(11): 511–518
- 14. Thakur C.K Raman , Vidyottama Kumari and M.K. Sharma , a-Generalized & a*separation Axioms for Topological Spaces , IOSR–JM, Volume 10, Issue 3 Ver. VI (2014), PP 32–36