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Abstract

The purpose of this paper is to develop monotone iteration scheme using the notion
of upper and lower solutions of nonlinear finite difference equations,which
corresponds to the nonlinear reaction diffusion equations with linear boundary
conditions. Two monotone sequences are constructed for the finite difference
equations when two sequences converge monotonically from above and below to
maximal and minimal solutions, which leads to the Existence-Comparison and
Uniqueness results for the solution of the nonlinear finite difference system.
Positivity Lemma is the main ingredient used in the proof of these results.
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1. Introduction

Various real problems in different fields from science and technology are governed
by nonlinear reaction diffusion equations. The method of upper and lower solutions
is one of the well known method employed successfully in the study of existence-
comparison and uniqueness of solutions of IBVP of a nonlinear partial differential
equations. In 1992,Sattinger [8] first developed this method for nonlinear parabolic
as well as elliptic boundary value problems. An excellent account of these results are
given in the elegant books by Ladde, Lakshmikantham and Vatsala [5] and Pao [7].
In the year 1985, Pao [6] developed this method for finite difference equations of
nonlinear parabolic and elliptic boundary value problems. Here, we develop the
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monotone scheme for finite difference system of nonlinear time degenerate parabolic
problems.

We plan the paper as follows:

In section 2, finite difference system of nonlinear time degenerate parabolic initial
boundary value problem is formulated from the corresponding continuous problem
under consideration. Section 3 is devoted for the monotone scheme for the discrete
problem. Using upper and lower solutions as distinct initial iterations, two
monotone sequences are constructed, which converge monotonically from above
and below to maximal and minimal solutions respectively. Also the existence-
comparison and uniqueness results for discrete problems are discussed in the last
section.

2. Finite Difference Equations:
Consider the time degenerate Dirichlet initial boundary value problem
d(x, t)us — L[u] = f(x, t, u); in Dr
Boundary condition u(x, t) = h(x, t ); on St (2.1)
Initial condition u(x, 0) = y(x); in Q
This equation can be written as
d(x, t)us — L[u] + c(x, t)u = c(x, t)u + f(x, t, u); in D

u(x, t) +b (x,t)yu=b (x,t)u +h(x, t ); on St (2.2)
u(x, 0) = y(x); in Q
where Q is a bounded domain in IRp (P=1,2,. )with boundary ¢Q; Dt , St,
T>0,L[u t b.(x,t
;a,,(x )6kak +Z i< ) ox,
i.e. L[u] = D(x, )V2u + b(x, t) . Vu and

b(x, 1) . Vi = bO(x, B) ;‘:

o+ b® (x, 1) 2
1 a o]

Note that D(x, t) > 0 and b(x, t) are diffusion and convection coefficients respectively
on Dr. Now, we write the discrete version of the above continuous time degenerate
Dirichlet IBVP (2.1) by converting it into finite difference equations.

Suppose that i = (i1, i2, 73,... ip) is a multiple index with iv =0, 1, 2,., My +1and x;
= (xi1, Xi2, ., Xip) is a arbitrary mesh point in Q, where My is the total number of
interior mesh points in the xiv coordinate direction. Denote by Q,, Gy, ¢ Qp, Ap and

Sp the sets of mesh points in Q, Q,0Q, and ; Dr , St respectively and /_\p. denote the

set of all mesh points. Suppose (i, n) is used to represent the mesh point (x;, t).
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Set  uin=u(xi tn); fin(tin) =f(xi, tn, u(Xi, tn)); Qim(Uim) = g(xi, tn, u(Xi, t));

Din = D(xi, tn) bin = b(xi, tn); Wi = W(xi); uio = u(xio); din = d(xi, tn).
Suppose ki = t; - t; -1 is the nth time increment for n =1, 2, .....,,N and h, is the special
increment in the xi, coordinate direction. Suppose C, = (0, ...... 1, ....... 0) is the unit
vector in RP where the constant 1 appears in the vth component and zero elsewhere.
Using the standard second order difference approximations. We have

Ay = ho 2 [u(xi + hoeo, tn) = 2u(xi, tn) + u(xi - hoeo, tn)]
Also we have the standard forward and backward first order difference
approximations

8+ uin = ho™! [u(xi + hoew, tn) - u(xi, ts)] and

8-@ uip = hyt [u(xitn) — u(xi - hoew, ta)] respectively.
In order to avoid the technical difficulties construction of monotone sequences,
suppose that each component b/(x;, ts), [ =1, 2, ....., p has the same sign in Q, but
boundary difference possess different signs for different /. Then we can define the
first order approximations in the Xiv coordinate direction as

Nom :{Si\/)ui,n when b =0

" 18%y,,, when b <0

Now the discrete version of the continuous problem
(2.1) is given by

£ [uin] = dijukn™ (Uin = tin-1) = L{uin] = fin(uin); (@1, n) € Ap. (2.3)

Uin = Qin(Uin); (i,n) €S,
uio=yi; i€y

This problem (2.3) can be written as

ik ™1 Ui n=vin-1) - Llujpl + Gintin =Cintin®  finWin) in Ap

Uin + bi,nui,n = bi,nui,n + gi,n(ui,n); (i,?’l) ESp (24‘)
p
uio = yi; ieQpe where L[u;,]1=> (D, A"y, +b8"y, ).
v=1

Assume that

(i) The coefficient d;,, is a non-negative in A,. However we will not assume that d;
is a bounded away from zero. Since d;, = 0 for some (i, n) € Ay and hence the
equation is time degenerate,

(ii) The functions fiu(in); gin(Uin), Wi and u;, are Holder continuous functions in
their respective domains,
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(iii) fin(uin) and gin(uin) satisfies the Lipschitz condition u;, in Ap

-G, U -u? <f u® —f u,(z) <t, u? -u®

S S T oo for G, <u® <u® <,
i ~ B u(l)_u(z) i,n i,n i,n in
=n Hin i,n - gi,n i,n gl n | n —=~i,n Yin in

(iv) Fin(tin) = Cinttin + fin(uin) is @ monotone nondecreasing in u;» for u,, €<y G >

and satisfies the Lipschitz condition |F, uf) -F, u? |<k® u®-u? foru® u® e<q, G, >.
where k{?is a constant and independent of (i, n),
(v) The function Gin(uin) = binttin + gin(ttin) is @ monotone nondecreasing in u;,, for

U, €<l ,,G , > and satisfies the Lipschitz condition

i,n?

|n|n— |n*

G, u® -G u?<K?| u®-u? Foru® u?e<d G, >. In terms of F and G the problem (2.4)

can be written as
Eluin] = Fin(uin); (i, n) € Ap
Uip + binlin= hin(Uin); (i, n) € Sp (2.5)
0 =i ieQy
where £[uin] = dinkn ' [tin = in-1] = L[tin] + cintdin.
The system (2.3) gives a suitable finite difference approximation for the construction
of monotone sequences.
To prove our main results we develop monotone scheme for the finite
difference equation (2.2). The following positivity lemma is a discrete version of the
positivity lemma for the continuous problem.

Lemma 2.1 (Positivity Lemma) Suppose that u;,, satisfies the following inequalities
dinkn™ (Wi = Uin 1) = L[ttin] + Cinttin 20 in Ap
Buin = ou(xi, tn) | xi = Ri| 7 [u(xitn) — u( Ry, ta)] + Binthin=0 onS,  (2.6)
uio=20 inQ
where ¢i» 2 0; di 2 0; Riis a suitable point in Q, and |x; - %i| is the distance between
xiand Ri. din20; fin20; cin + Bin > 0; on Sy and ¢ = ¢ is a bounded function in Ap.
Then u;» 2 0in A p. Moreover u;,» > 0 in Ap, unless it is identically zero.

Proof is simple so details are omitted.

3. Monotone Scheme

R. M. Dhaigude Page 4


http://www.universalprint.org/

International Journal of Universal Mathematics and Mathematical Sciences
: 3 ISSN: 2454-7271 Volume: 02, Issue: 01, Pages:01-13,

”"', ,; Published:June,2016 Web: www.universalprint.org ,

(e}~ Title Key: Monotone Method For Finite Difference Equations...

Now, we develop monotone scheme for discrete time degenerate Dirichlet IBVP(2.3).
We define upper and lower solutions of the time degenerate dicrete problem (2.3).

Definition 3.1 : A function U; ,in A is called upper solution of (2.3) if

dl nkn i, |,n—l - I‘|:L]i,n:|Z 1:i,n Ui,n : (iln) € AP
ﬁi,n 2 gim (ﬁi,n) i,n S Sp (31)
l]i,O Z\Iji; 1e Qp

Definition 3.2 : A function U;, in A is called lower solution of the discrete problem
(2.3) if
d k! G, =G, ~L[G, < f, G, 5 (G n) €Ay
Ui,n < Gin (Gin) ineSy (3.2)
U0 < Wi ieQy
Definition 3.3: We denote the sector S/, for any ordered upper and lower solutions

0.0, and is defined as S, ineA0 L =U =0

I,I’I

Definition 3.4 The functions U;,,0,, are called ordered upper and lower solutions if

nLn

0, =0, mA

Ln =
Monotone Iteration Scheme: Consider the following iteration scheme with suitable

initial iteration u®®

in?

£[ui,n ] = Fi,n (U.i,n (k_l)),' (l, n) c Ap

i, n(k) + binui,n(k) = Gi,n(lli,n (k1) ), (1, 7’1) S Sp (33)
uio® =y ieQy
For k =1 we have,
£ l‘L n FI n i,n O;_ (i, 1’1) S Ap
ui,n +9inUi,n!‘:Gi,n Gi,nei: on Sp
UIOI:(,O::% in Q,

Since u{ is known the RH.S. is known. The existency theory for linear Parabolic

IBVP implies that u? exists. Similarly for k = 2 we have

Equfﬁmqf{ (i, n) € Ay (3.5)
(2)

ui,n +9inui,na::Gi,n Giyn]:_ on Sp
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ui,OQ:x’O::'//i in Qp
Since &;, Li is known the R.H.S. is known. The existence theory for linear Parabolic

IBVPs implies that @;,% exists. Thus fork =3,4, ......... we get u® ult,.....
Thus we construct a sequence, the sequence is well defined follows from Lemma 2.1.
We choose initial iteration u}) =0;, and denote the sequence by T’ . We also

choose initial iteration u{? =0, and denote the sequence by u® . Thus choosing an

upper solution or lower solution as the initial iterations, we get upper and lower
sequences T and u® respectively.
Lemma 3.1 (Monotone Property) : Suppose that

i G, , are ordered upper and lower solutions of nonlinear time degenerate

Dirichlet IBVP (2.3),i.e.
din K, [thin = tin-1] = L{tin] = fin(uin); in Ap
Uin = Sin(Uin); onS,
uio = Wi ieQy,

(i)  fin(uin) and gin(uin) satisfies the Lipschitz condition
®_y®@ & @ <5 y®_y?
_g,n ui,n _ui,n =< fi,n ui,n - . ui,n SCi,n ui,n _ui,n

in

b, uf-ul <g, uf -g, uf <b, ul-u? (3.6)
for u®),u® e<q, 0., >. Then the sequences T , u possess the monotone
property.

0, <ufy <uff™? <o <GP <0, in A, (3.7)

Moreover, T and u¥ are ordered upper and lower solutions of time degenerate

Dirichlet IBVP fork=1,2,3, ......
Proof: Define

Since U;, is an upper solution, we have by definition 3.1
di,nkr;1 |:Ui,n - l]i,n—l:| - I‘|:l‘ji,n :| 2 fi,n l‘]i,n ; in Ap
Uin 2 gin (Qin) i1 €Sp
Ui o =W, ieQy,
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Clearly
LS U S AU A Y R [ Y
~Lw,1=-L[a, ]+ =[G ]
GnWin =Gl = G o007
By adding we get
Aok [ Wy =Wy | = LW 1+ G, =]k G, =, — LG, ]+6,0,, ]
[d Kt 09 -a®, —L[g¥] +9.nU.(ﬂ

[dmkn T (1 g,nﬂi,n:| [_m 01, 0l } (By iterative scheme)

Lo Ln

=d k' 0, -0,, -Ld,]+c,0,-¢.0,-f.@,)
=d k' G,-0,, -Ld,]-f,(,)=0

d; .k, [ n =W J= LW, 1+ G W, 20,in A,
Also, W, +b; W ..>0; onS, and

Wo =0io — G5
~¥,>0
“wio20 inQ
Now applying the Lemma 2.1 we get, wi» 2 0;in A . This implies that
TR VAR (3.8)

We also know that U. ., is a lower solution.

Ln

Define w,, =0 —0? and using u) =0, ,, We have w,, =u® -,

nLn n Ln?
using the above argument we get, u&) >u?. (3.9)
Next we define w® =g —uf)
A W® —w® @ @
WS —wE ] - L[ w® ]+ g

@ @) @ 7@

_I:dln n |:U ui,n71:|_L|:u' :|+(_:| nuln
(1) @ @) @

|:d|n n U _gl :I—LI:U :|+_|an

= Fi,n Ui,n - f L]iyn > O AISO Wi,n(l) +bi,nwln > 0 W(l) = U(l !l(l \Ijz \III = 0:

i,n

Applying the lemma 2.1 we get, W) >0. This shows that uy <t (3.10)
we conclude thatu!) <u®) <o <g? (3.11)
Assume by induction ul ™ <yl <o) <T&? in A, (3.12)
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Define function W'y =T —T{*".

Using iterative scheme and Lipschitz condition, w®) satisfies the relation

6o o v oo = ki [099 0%, - L[ ] 6,0
[ . n I:u(’:rl) UI(E? [ (k+1):|+9lnul(ﬁ+l)_
(a8« 1, 0 |60 1, 2 |

=F, 05" —F, G7 =0
d; .k, [Wf"n —w® J L[Wf"‘n)} G WY 20in A, Also Win®+binWin
;
=G, Ui(,ﬁil) -G, Qi(,? >0
w =08 -G =¥;i-¥i=0 ~wy=0 inQ,
Again applying the lemma 2.1 we get, W) >0 ; ie. G <g® (3.13)

Similarly consider W =u%™® —u®

=i,n =in

(By using iterative scheme and Lipschitz condition),

d; bt [w —w, ]- L[ T+ g w20 in A,

i,n i,n-1

Also  Win® +biawin® =G, u® —G,, u? >0

Ln =nn Ln

2w =0, in Q,

: k K+1] k
Then we obtain w’ >0. So uf§™ >u (3.14)
Now define w) =gl — gl
K) _ () ) ()
|n n |:\N( \Nl(n 1:| L|:\Ni,n:|+gnvvln

— i (K (k)
_Fi,n Ui -k Uin =0

in

(k) (k—0)
=Fn ~Fin Uiy 20

Tl - w, - Ll ] ¢ Y20 in Ay
Also  win® + binwin®) 20
~w® =0, in Q,
WS 0. S0 04 >y 6.15)
Thus we have, from the principle of induction
U, <ul) <yl <gl? <ol <q, in A, foreveryk=1,2,3, ......

IL,n — =,n
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This completes the proof.

4. Applications:
Theorem 4.1 (Existence-Comparison Theorem) Suppose that

i) G,U, are ordered upper and lower solutions of nonlinear time degenerate
Neumann IBVP (2.3),
Akt Uiy Uiy | = LIU 0= fi(U)iin A,
Uin = gin(Uin); onSp
uio= yi; i€y,
(i)  fin(uin) and gi,n(uin) satisfies the Lipschitz conditions
u

¢, uY-u? <f u® —f u? < ud-u?

L = Ln Ln Ln Ln Ln

2 n 1 2 (@ 2 ~
_g,n ui,n |n —gln i,n _gi,n ui(,n) S_bun ui(,ri_ui(,n) for UI) U() <Uj,, 0, >.

n’=i,n i,n?>in

Then the sequences TY , u¥ converges monotonically to unique solution u;,, of

' An

time degenerate Dirichlet IBVP (2.3) and satisfy the relation

O, <uS <..<U, <O <. <O <G in A 4.1)

L,h —=3n n—

Proof: We show the monotone convergence of the maximal and minimal sequences
oo

gl , u  respectively. Suppose w,, =T) -0 where G2 =0, . By using the

definition 2.1 and iterative scheme, we have,
|nn( _\Ni,nfl)_L[ ]+_|n i,n :|:|nn(u|n_ |nl) L[U ]+C|n|n:|

[k @ -0, - LG ]+c,89 |
:|: |n n (u|n_ |n 1) L|:u|n:|+_|n |n:| |:C|nu|(g)+f ul(,g) :|
@

:dinkr;l(l]i,n_uin—l)_L[ }+9Iﬂulﬂ _ll‘lulﬂ_f ) |n n (uln_ai,n—l)_l‘[ai,n}_fi,n l]i,n >0

d k (i‘ |n1) [ ]-I-gnWInZom

Lnn

Also, W, +b; w >0 ;W =0T =0

=Ln Nt —

20,|er-By using lemma 2.1, we get, w, >0in A,

Ln —

LG 200 (4.2)

We also know that U is a lower solution. Define w,, =u® —u% and using u!? =0, ,
-~ W, =u® -0 . Then we obtain, wj 2 0. This gives u& >u?. (4.3)
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Next suppose that w') =T —u'Y. Then by using the given Lipschitz condition, and
by iterative scheme, we get,
dy kit WO -w L[ g Wl =] 6,09+, g9 |- gu®+ 1, u? |

:|:(_:|,nl]i,n + fi,n l"Ii,n ]_[g,nai,n + 1:i,n lji,n :| = Fi,n U - Fi,n u >O In Ap

in in =
. -1 1 1 1 1
skt W —we —L|:Wi('n):|+c w? >0

Also win® + binwin® =G, TP -G, u? 20

LWl =0ieqy.
Thus by Lemma 2.1, we get

W5 0. Uy <Gy (4.4)
Thus by (4.2), (4.3) and (4.4), we get

(0) O <7
!i,n Sgi,n <y

@ < g©
i,n < LIi,n '
Assume by induction
kD <0 < gl <gtDdin A
Uty 7 Sun <o <0 Iin A

Define a function w() =G — g™

in

. -1 k k k k) _ (k1) i (k-1) (k) (k)
. di,nkn Wi(,n) _Wi(,n)—l:|_ L|:Wi(,n):|+9|, W( ) _|:9|,nui,n + fi,n ui,n :|_|:C (N fi,n ui,n :|

n"i,n =,n™i,n
(By using definition 2.1 and iterative scheme)
R, 640 <F, 00 >0

(By using Lipschtiz condition)
st W - L g w20 A,

inn i,n i,n-1 NN
Also, win® + biawin®) =G, T5%Y -G, T =0
- w% =0,ieQ,. Then we obtain
w(g > 0. 50 T}, 2 G (4.5)
Now define consider W =u®™® —u®;
) w9, ] L[]

— (k) (k) (k-1) (k-1)
_|:£’|,nui,n + fi,n gi,n :|_|:9|,ngi,n + fi,n E,n :|

(By using iterative scheme and Lipschitz condition),
k[ w2 - LWl [ w20 in A,

Also win® +biawin® =G, u® -G, u*? =0; ~w¥=0,inQ,

~~in Hpn iin Zn
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. . k
Then we obtain win® 0. So Uin®+) > g n® (4.6)
e WO, LT o, w0 (e, w0 ]

(By definition 2.1 and using iterative scheme)
=F_ o% —-F_u® >0
(By using Lipschtiz condition)
d|nkn Vvl(l:l Wl(l:11 |: :' 91 Wk)>OA

Also, win® +binwin® =G, G -G, u¥ 20 ; - w¥ =0,ieQ,.
w® >0.; so Tl >ul (4.7)
Thus from (4.5), (4.6) and (4.7) we have, u® <u®® <l <afy. (4.8)

Thus monotone property (3.7) follows from principle of mathematical induction.

Now we conclude that the sequence T is a monotone nonincreasing and is

bounded from below hence it is convergent. Also the sequence ul is monotone

nondecreasing and is bounded from above. Hence it is convergent. So, Il(imLTifE) =0,
and lim u =u, , exists and called maximal and minimal solutions respectively of the
—wn !

time degenerate parabolic Dirichlet initial boundary value problem (2.3) and they
satisfy G, <u® <u® <...<u, <0, <....<G? <GF <0;,. This completes the proof.
Theorem 4.2 [Uniqueness Theorem] Suppose that
i) G,.0  are ordered upper and lower solutions of time degenerate Dirichlet IBVP
(2.3)i.e.
okt U =U |- LU, ]= i u)iGn)eA,
Uin = gin(ttin); onSp
uio= yi; i Qp with 0=0,

(ii) The functions fi«(uix) and gin(uin) satisfies the Lipschtiz condition
-G, U -u® <f u®-f u? <c u?-u?

Min in = i.n
(1) (2) _ (1) h () 2

_t_)ln U- —U- _gi,n U gln |n Sbl |n_ui,n for ulngu()<u hOldS

d,nkn >G,—h,.

Then the discrete problem (2.3) has a unique solution.

Proof : We know that 0 are maximal and minimal solutions respectively of the

|n’_|n

discrete time degenerate Dirichlet IBVP (2.3). To prove uniqueness we suppose that,
VVl,n:Ui _u dlnkn ( in |n1) L|: |n:|_f|n( ):fi,n Ui,n _fi,n gi,n
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—Gn
9' |n n( _\Ni,nfl)_L[vvi,n]—'_gln\NlnzomA
[W(Xl’ n) W Xl’ n ]"'_un i,n
=% =% [ [T06) =T Rt | =% =& [M[ulx.t)-u .t ]+b G, by,

=[x =% [ [T06t) =T Rt J+b, G, [=[1% =% 7 [u0g.t)—u .t ]+b,7, |

=190 T, —b, T, |-[0i, Un —b, U, ]
(by using iterative scheme),

=G, 4G, -G, y, =0;0nS,

W,=U,-u, =% -¥i=0 in§5,

By using the positivity lemma we get w,, =0 in A,

L0, 2, (4.9)
Also we can show that T, , <y, | (4.10)

Inequalities (4.9) and (4.10) implies that 0,6 =y in Ap... IBVP (2.3) has unique

solution.

]_C

Hence the result.

5 .Results: Extended the well known method of upper -lower solutions for
continuous parabolic problem to finite difference system of nonlinear time
degenerate parabolic Dirichlet initial boundary value problem.

6.Discussion: Researchers can be extend the well known method of upper -lower
solutions for continuous nonlinear parabolic problem to finite difference system of
nonlinear time degenerate parabolic Mixed initial boundary value problem .
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