

ISSN: 2454-7263 ID: ACTRA 2018 007 Published Mar. 2018 Volume No. 04, Issue No.01, Copyright © Universal Print

Web: www.universalprint.org , Email: ijup@universalprint.org Title Key: Kinetics and Spectral Investigation of Oxidation...

Kinetics and Spectral Investigation of Oxidation of 2nitro-1-Butanol by TripropylammoniumFluorochromate

Surendra N. Takale and Gulam farooq Mustafa

P.G., Department of Chemistry, Sir Sayyed College, Aurangabad, 431001 (M.S.) India. E-Mail: surendratakale@gmail.com

Abstract: The kinetics of oxidation of 2-nitro-1-butanol by tripropylammoniumfluorochromate {TriPAFC} has been studied spectrophotometrically in presence of sulphuric acid in aqueous acetic acid medium in the temperature range 292-318K. The reaction is first order with respect to both 2-nitro-1-butanoland TriPAFC. The activation parameters for the slow step were computed and calculated. Effect of ionic strength and dielectric constant of medium has also been reported. A suitable mechanism has been proposed.

Key words: 2-Methoxy-1-butanol, Tripropylammoniumfluorochromate, Oxidation, Kinetics.

INTRODUCTION:-

Selective oxidation of alcohols to their corresponding aldehydes and ketones is an important transformation in organic chemistry which has received the most attention over years, especially in the search of versatile and selective reagent for this purpose. Halochromates have been used as mild and selective oxidizing reagent in synthetic organic chemistry. Chromic acid being one of the most versatile and selective available oxidizing reagent. The synthesis of newer chromate (VI) reagent for the oxidation of organic substrates continues to be interest. In recent years, significant improvements were achieved by the use of new oxidizing agents [1-16] for the study of kinetics and mechanism of various organic compounds. We synthesized new have reagent **TriPAFC** which is mild, efficient, selective, and stable oxidizing reagent. Literature survey reveals that there no report is available on kinetics and mechanism of oxidation of 2-nitro-1-butanolby TriPAFC; hence we have considered it to study the kinetics and mechanism of oxidation of 2-nitro-1-butanolby TriPAFC.

EXPERIMENTAL SECTION:-

All the chemicals and reagents were of analytical grade. All the solutions used in the study were prepared by using distilled acetic acid [17] and doubly distilled water. TripropylammoniumFluorochromate was prepared by the following method: chromium (VI) oxide (15.0g, o.150 mol) was dissolved in water in a polyethylene beaker and 40% hydrofluoric acid (11.3 ml, 0.225 mol) was added with stirring at 0°C. To the resultant orange solution, tripropylammine (28.3 ml, 0.150 mol) was

ISSN: 2454-7263 ID: ACTRA 2018 007 Published Mar. 2018 Volume No. 04, Issue No.01, Copyright © Universal Print

Web: www.universalprint.org , Email: ijup@universalprint.org Title Key: Kinetics and Spectral Investigation of Oxidation...

added drop wise with stirring to this solution over a period of 30 minutes and stirring was continued for 30 minutes at 0°C. The orange colored precipitate was filtered, washed with petroleum ether and dried in vacuum for 2 hours at room temperature [18]. Yield was 28 g (96%); mp was 145°C.

The Tripropylammoniumfluorochromate was stored in polyethylene bottle for long period of time. TriPAFC was soluble in water, DMF, acetonitrile, acetone and DCM and was sparingly soluble in benzene, chloroform and hexane.

DETERMINATION OF STOICHIOMETRY AND PRODUCT ANALYSIS:-

The Stoichiometry of the reaction was determined by carrying out several sets of experiment with varying amount of (TriPAFC) largely in excess over 2-nitro-1-butanolin 20% acetic acid by using 0.1N H₂SO₄. The remaining (TriPAFC) was then analyzed Spectrophotometrically. The result indicated that 1 mole of alcohols react with 1 mole (TriPAFC).

R-CH₂-OH +
$$[C_3H_7]_3$$
NH(CrO₃F) $\xrightarrow{H^+}$ R \xrightarrow{O} + $(C_3H_7)_3$ NH(CrO₃H₂F)

The product analysis was carried out under kinetic conditions. In a typical experiment, 2-nitro-1-butanol(0.05 mol) and TriPAFC (0.01) were made up to 50 ml in 20% acetic acid and kept in dark for about 24 hours to ensure the completion of the reaction. The solution was then treated with an excess (200 ml) of a saturated solution of 2, 4-dinitrophenylhydrazine in 2 mol dm⁻³HCl and kept overnight in a refrigerator. The precipitated dinitrophenylhydrazone (DNP) filtered off, dried, weighed, recrystalized from ethanol and weighed again. The yield of DNP before and afterrecrystallisation was 2.0 g (91%) and 1.7 g (76%) respectively. The DNP was found identical with the DNP of acetone by meting point. The products were also characterized by TLC, IR, and NMR spectra.

KINETIC MEASUREMENTS:-

The reactions were followed under pseudo-first-order conditions by keeping large excess (x 10 or greater) of the 2-

nitro-1-butanolover TriPAFC. The temperature was kept constant to +/- 0.1 K. The solvent was acetic acid. The reactions were followed by monitoring the decrease in the concentration of TriPAFCspectrophotometrically at 345 nm for 80% completion of the reaction. The pseudo-first-order rate constants K obs., were evaluated from the linear (r=0.990-0.999) plots of log [TriPAFC] against time. Duplicate kinetic runs showed that the rate constants were reproducible to within +/- 3%.

RESULT AND DISCUSSION:-

The results of oxidation of 2-nitro-1-butanolby TriPAFC are represented as follows.

Effect of variation of concentration 2-methoxy-1-butanol:-

The oxidation of 2-nitro-1-butanol (2-nB) with TriPAFC in 20% of acetic acid in presence of sulphuric acid yields acetone. By keeping constant [TriPAFC] and [H₂SO₄], the increase in [2-nitro-1-

ISSN: 2454-7263 ID: ACTRA 2018 007 Published Mar. 2018 Volume No. 04, Issue No.01, Copyright © Universal Print

Web: www.universalprint.org, Email: ijup@universalprint.org

Title Key: Kinetics and Spectral Investigation of Oxidation...

butanol] increases the rate of reaction (Table-1). The plot of log of kobs versus log [2-nitro-1-butanol] for different initial concentration of 2-nitro-1-butanolis linear with unit slope, demonstrate the first order dependence of rate on 2-nitro-1-butanol (Figure: 1).

Table 1: Effect of variation of [2-nitro-1-butanol] on reaction rate

 $[TriPAFC] = 0.001 \text{ M}, [H_2SO_4] = 0.1 \text{ N}, Temperature} = 303 \text{ k}, AA = 20\% (v/v)$

[MB]	0.01M	0.02M	0.03M	0.04M	0.05M	0.06M	0.07M	0.08M
k x 10 ³ sec ⁻¹	2.06	2.35	2.64	2.94	3.22	3.50	3.78	4.08

Figure: 1: Plot of 2+ Log [2-nitro-1-butanol] Vs 3+Logk`

Effect of variation of concentration of TriPAFC:-

At constant [2-nitro-1-butanol] and [H₂SO₄], the increase in [TriPAFC] increases the rate of reaction (Table-2).

The plot of $log k_{obs}$ verses log [TriPAFC]for different initial concentration of TriPAFC is linear with unit slope present the first-order dependence of rate on TriPAFC.

Table 2: Effect of variation of [TriPAFC] on reaction rate

[2-nitro-1-butanol] = 0.01 M, $[H_2SO_4]$ = 0.1 N, Temp = 303 k, AA = 20% (v/v)

[TriPAFC] Mole	0.001	0.0015	0.002	0.0025	0.003	0.0035	0.004	0.0045
k x 10 ³ sec ⁻¹	2.06	2.33	2.58	2.84	3.08	3.31	3.55	3.79

ISSN: 2454-7263 ID: ACTRA 2018 007 Published Mar. 2018 Volume No. 04, Issue No.01, Copyright © Universal Print

Web: www.universalprint.org , Email: ijup@universalprint.org Title Key: Kinetics and Spectral Investigation of Oxidation...

Effect of variation of concentration of H⁺:-

In order to study the effect the H⁺ion concentration on the rate of oxidation reaction of 2-nitro-1-butanol, the dependence of reaction rate has been investigated at different initial

concentration of H_2SO_4 . The rate of reaction increases with increase in $[H_2SO_4]$ (Table-3). The plot of log K_{obs} verses log [H+] are also straight line with slope less than unity, Indicating a fractional order dependence on [H+].

Table 3: Effect of variation of [H₂SO₄] on reaction rate

[TriPAFC]= 0.001 M, [2-nitro-1-butanol] = 0.01 M, Temp. = 303 k, AA = 20% (v/v)

[H ₂ SO ₄]	0.1M	0.2M	0.3M	0.4M	0.5M	0.6M	0.7M	0.8M
k x 10 ³ sec ⁻¹	2.06	2.26	2.43	2.60	2.75	2.91	3.06	3.24

Effect of ionic strength:-

In the present investigation effect of salt on the rate of reaction is carried out. The salts selected are KCl, KBr, and KI. These will give effect of anion particularly halides on the rate of reaction. The divalent and trivalent cationic salt were also used such as CaCl₂ , Ca(NO₃)₂, Al(NO₃)₃ and K₂SO₄. The experiments were carried out under pseudo- first- order condition. These results were used to determine first order rate constant. The

rate constants for the oxidation of 2-nitro-1-butanolin presence of different salt are shown in [Table 4]. From table it is clear that, the rate increases with increase in cationic charge and decreases with increase in anionic charge. In case of KCl the rate of reaction decreases with the addition of KCl, this is due to the formation of less reactive species [19] by interaction between Cl ion and protonated TriPAFC.

Table 4: Effect of variation of [salts] on reaction rate

[TriPAFC]= 0.001 M, [MB] = 0.01 M, [H₂SO₄] = 0.1 N, Temp. =303 k, AA = 20% (v/v)

Salts 0.1M	KCl	KBr	KI	CaCl ₂	Ca(NO ₃) ₃	Al(NO) ₃	K ₂ SO ₄
k x 10 ³ sec ⁻¹	2.07	2.38	2.38	2.47	2.76	2.98	2.34

Effect of solvent composition:-

At fixed [2-nB], [TriPAFC] and [H⁺], the rate of oxidation of 2-nitro-1-

butanolwith TriPAFC increases with decrease in polarity of solvent (Table 5). This is due to polar character of transition

ISSN: 2454-7263 ID: ACTRA 2018 007 Published Mar. 2018 Volume No. 04, Issue No.01, Copyright © Universal Print

Web: www.universalprint.org , Email: ijup@universalprint.org

Title Key: Kinetics and Spectral Investigation of Oxidation...

state as compared to the reactant. The plot of $log k_{obs}$ verses 1/D is linear with positive

slope indicating ion- dipole type of reaction [20].

Table5: Effect of variation of Acetic Acid % on reaction rate

 $[TriPAFC] = 0.001 \text{ M}, [H_2SO_4] = 0.1 \text{ N}, [2-nitro-1-butanol] = 0.01 \text{ M}, Temp=303 \text{ k}$

Acetic acid	10 %	20 %	30 %	40 %	50 %	60 %	70 %	80 %
k x 10 ³ sec ⁻¹	1.95	2.06	2.21	2.34	2.46	2.58	2.72	2.86

Effect of temperature:-

The study of effect of temperature on rate of oxidation of 2-nitro-1-butanolby TriPAFC has been subjected to different temperature range 293K to 313K by

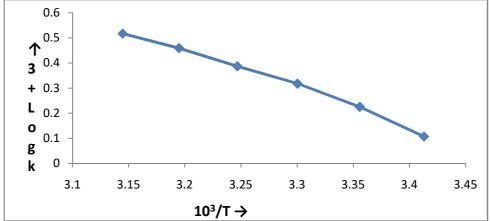

keeping the concentration of 2-nitro-1-butanoland reagent constant. Rate constants are given in [Table 6]. The plots of log of K_{obs} verses 1/T are linear (Figure: 2)

Table 6: Effect of variation of Temperatures on reaction rate

[TriPAFC] = 0.001 M, [2-nitro-1-butanol] = 0.01 M, [H₂SO₄] = 0.1 N, AA = 20% (v/v)

Temperatures (K)	293	298	303	308	313	318
k x 10 ³ sec ⁻¹	1.27	1.69	2.06	2.44	2.88	3.28

Figure: 2: Arrhenius plot of oxidation of 2-nitro-1-butanol

Activation parameters are presented in [Table 7]. The negative values of entropy of activation reflect that the transition state is more rigid than initial state. The nearly constant ΔG value indicates that similar mechanism is operative for the oxidation of 2-nitro-1-butanol.

Table 7: Activation Parameters

ISSN: 2454-7263 ID: ACTRA 2018 007 Published Mar. 2018 Volume No. 04, Issue No.01, Copyright © Universal Print

Web: www.universalprint.org , Email: ijup@universalprint.org Title Key: Kinetics and Spectral Investigation of Oxidation...

[TriPAFC]= 0.001 M, [MB] = 0.01 M. [H_2SO_4] = 0.1 N, Temp. =303 k, AA = 20 % (v/v)

Activation	ΔE _a KJ mole ⁻¹	ΔH [#] KJmol ⁻¹	ΔS [#] JK ⁻¹ mole ⁻¹	ΔG# KJ mole ⁻¹
parameters	26.67	23.85	-230.16	88.93

Energy-entropy relationship:-

The entropy of activation and heat of reaction are correlated by equation 1.

$$\Delta H^{\#} = \Delta H^{o} + \beta \Delta S^{\#}$$
 (1)

Where β is the isokinetic temperature, the isokinetic temperature for the reactions between 2-nitro-1-butanoland TriPAFC in aqueous acetic acid is 406K, which is greater than experimental temperature. The values of entropy of activation also suggested that the reaction is entropy as well as enthalpy controlled. The values of free energies of activation of reaction were found to be more or less similar. These trends also support the identical reaction mechanism being followed in these reactions [21].

CONCLUSION:-

The rate constants of the slow step involved in the mechanism were evaluated. Activation parameters were also computed. The negative value of $\Delta S^{\#}$ provides support to the formation of rigid transition state. The overall mechanism described here is consistent with product and kinetic studies.

Mechanism of oxidation of 2-nitro-1-butanolby TriPAFC:-

ISSN: 2454-7263 ID: ACTRA 2018 007 Published Mar. 2018 Volume No. 04, Issue No.01, Copyright © Universal Print

Web: www.universalprint.org, Email: ijup@universalprint.org

Title Key: Kinetics and Spectral Investigation of Oxidation...

R-CH₂-OH + OTPNH

R-CH₂-OH + Fast
$$K_{-1}$$

Primary Alcohol

 K_{1}
 K_{1}
 K_{2}
 K_{2}
 K_{-1}
 K_{1}
 K_{2}
 K_{2}
 K_{3}
 K_{4}
 K_{1}
 K_{2}
 K_{3}
 K_{4}
 K_{1}
 K_{2}
 K_{3}
 K_{4}
 K_{5}
 K_{1}
 K_{2}
 K_{3}
 K_{4}
 K_{5}
 K_{1}
 K_{2}
 K_{3}
 K_{4}
 K_{5}
 K_{1}
 K_{1}
 K_{2}
 K_{3}
 K_{4}
 K_{5}
 K_{1}
 K_{2}
 K_{3}
 K_{4}
 K_{5}
 K_{5}

 $R=CH_3-CH_2-CH(NO_2)$

Acknowledgement:-

Aldehyde

The authors are thankful to the Dr. ShamamaParveen, President of RECWS Aurangabad and Dr. Shaikh

HO

kabeer Ahmed, Principal Sir Sayyed College, Aurangabad, for providing laboratory facilities.

II

REFERENCES:-

- 1) Sayyed Hussain, TakaleSurendra, JOCPR, **2012**, 4(9), 4406-4411
- 2) Murugesan. v., Pandugangan. A.ReactKinet. Catal. Lett. 1995, 54, 173.
- 3) Banerji.K.K, J. Chem. Society, Parkin Trans, 1998, 2, 547.
- 4) S.G. Patil, S.B. Joshi, Asian J. Chem., **2002**, 14,130.
- 5) S.Kavita, A. Pandurangan, I. Alphonse. Indian J. Chem., 2005, 44A, 715.
- 6) Banerji.K.K, Bull Chem. Society, Japan. 1978, 51, 2732.
- 7) V. Kumbhat, Sharma. P.K, Banerji.K.K. Indian J. Chem., **2000**, 39A, 1169.
- 8) R.Gurumurty, M.Gopalkrishnan, B. Kathikeyan. Asian J. Chem., 1998, 10, 476.
- 9) I. Dave, V. Sharma, K.K. Banerji, J. Indian Chem. Society, **2002**, 79, 347.
- 10) S.A. Chimatadar, M.S.Salunke, S.T.Nandibewoor, Indian J. Chem., **2006**, 45A, 388.
- 11) D.S. Bhuvaneshwari, K.P. Elengo, Int. J.chem. Kinetics. 2005, 37, 166.
- 12) Mansoor. S.S, Asian J.Chem. **2010**, 22(10), 7591.

ISSN: 2454-7263 ID: ACTRA 2018 007 Published Mar. 2018 Volume No. 04, Issue No.01, Copyright © Universal Print Web: www.universalprint.org, Email: ijup@universalprint.org
Title Key: Kinetics and Spectral Investigation of Oxidation...

- 13) Kassaee.M.Z, Sayyed-Alangi. S.Z, and Sajjadi-Ghotbabadi.H, Molecule, **2004**, 9,825.
- 14) MansoorS.S, and Shafi S.S, Reac. Kinet. Mech. Cat., 2010, 21,100(1).
- 15) MansoorS.S, and Shafi S.S, E-Journal chem., 2009, 6,522.
- 16) Vibhute A. Y, Patwari S. B, Khansole and Vibhute Y.B, chin. Chem. Lett., **2009**, 20, 256.
- 17) Weissberger A and prabankar S, Oganic Solvents physical properties and methods of purification. 2nd. Interscience Publishers, Londan, **1995**, 390.
- 18) Ghammamamy S and Hashemzadeh A, Bull Korean chem. Soc., 2004, 25, 1277.
- 19) K.J. Ladler; Chemical Kinetics. Tata McGraw –Hill Publication New Delhi, **1973**, 129.
- E.S. Amiss: Solvent Effect son Reaction Rate and Mechanism. Academic press, New York, 1967.
- 21) T. Gowda. M.C.Mary. Indian J. Chem., 2001, 40A, 1196.